
Forensic Software Engineering: an overview

Les Hatton
CIS, University of Kingston, UK∗

December 19, 2004

Abstract

Traditional software engineering is not really a branch of engineering
at all as it lacks any kind of systematic measurement framework on which
to base improvement, [16]. There are many different facets to the notion
of software improvement but here, the focus will be on just one, that of
the prevention of defect. In this context, Forensic Software Engineering
is an amalgam of techniques specifically aimed at extracting patterns of
failure associated with software controlled systems, categorising them and
using the information to prevent future failures of the same kind. This is
in fact a classic engineering paradigm but there is a particular need in the
software community to isolate it from the unusually creative but generally
measurement-free mainstream. This article introduces some of the ideas
and hopes.

$Date: 2004/11/26 11:32:41 $

1 Overview

The discipline known somewhat incorrectly as software engineering and more
accurately as software development, spans many areas from the extremely prag-
matic such as testing, all the way through to the extremely abstruse such as
formal approaches to system description. Arguably the only thing all these dis-
parate areas share in common is the humble mistake. Software systems are so
complex, (even a relatively small system could quite easily have more indepen-
dent paths through it than the number of elementary particles in the known
universe), that whatever approach is taken to build or verify it, it will be in-
evitably flawed and all too frequently very flawed. At one end of the spectrum,
testing seeks to eliminate defects before the ultimate user of the system takes
control and at the other end of the spectrum, formal systems attempt to elimi-
nate defect by mathematical reasoning.

In spite of the disappointments, there is a continual production line of new
development methodologies each in its own way seeking the Holy Grail of zero
defect. Some are highly formalised and built around increasingly labyrinthine
process models such as the CMM in its latest incarnations and some attempt
to short-circuit such bureaucracy under the general heading of agile techniques.

∗L.Hatton@kingston.ac.uk, lesh@leshatton.org

1

This is all supported by a vast array of languages, environments and tools to
the extent where it is becoming extremely difficult to know what to teach to
students of the subject. This is a central characteristic of an essentially fashion
based subject.

Forensic Software Engineering has a very simple premise. It simply doesn’t
care what development methodology, language, environment or tooling is used
to build a system, it is only concerned with collecting defect data from the
resulting systems to avoid injecting the same defects in future systems built with
whatever technology is in use. In point of fact, the original essence of CMM
level 5 is precisely this although it is becoming increasingly difficult to see as
the CMM itself grows and grows and grows. Ultimately such data may then be
used to produce improved techniques founded on incremental improvement.

The hope of course is that the nature of defect obeys macroscopic and as
yet largely undiscovered rules. This is perhaps not an unreasonable hope. A
physical system such as the atmosphere in a room is an immensely complex
system with many molecules in random motion, however the whole system fol-
lows the macroscopic thermodynamic rule PV = RT (where P is the pressure,
V the volume, T the temperature and R the general gas constant) across an
astonishingly wide range of temperatures and pressures. If such systems could
only be predicted from the movement of the individual molecules, no progress
would have been made whatsoever.

There is some early hope that similar rules may exist for software systems and
like their equivalents in the physical world give good predictive behaviour in the
elimination of defect. It is certainly true that the vast majority of failures in
software controlled systems could have been avoided using techniques we already
know how to do. In essence, we do not have a technological problem, we have
an educational problem, writ very large.

2 Some unpleasant reminders

In general, the software development community certainly does not make things
any easier for itself. Perhaps the most important requirement to improve a
process or way of doing something, whatever that might be, is that the rate
at which the process changes naturally should be significantly slower than the
time taken for process measurements to be analysed and used to modify that
process. This has proven relatively easy to do in the manufacturing industries
where literally incredible strides in failure avoidance have been taken against
the background of relatively slowly moving processes with a solid measurement
framework. So consumer devices such as hard disk drives or car engines are
in some cases orders of magnitude more reliable than their ancestors of just 20
years ago. In bridge building, defect prone technologies such as the box-girder
bridge are no longer used. The torsional failure mode of suspension bridges
such as the eponymous Tacoma Narrows bridge is now avoided by increasing
the skirt on each side of the road. The net result is that bridges are gratifyingly
and reassuringly reliable, hard disk drives are frequently more reliable than the

2

back-up media we use to mirror them, car engines will often go 3-400,000 km.
without the head being taken off and so on.

How does the software development community fare against this kind of com-
parison ? Well, in the same period, tens and probably hundreds of programming
languages have come and gone. Universities teach languages which may never
be used in the world of commercial systems. The argument frequently offered
for this is that it is only to teach concepts but unfortunately in my experience,
the notational complexity of most programming languages can make it very dif-
ficult indeed for students to extract concept. Those languages which are used
are, since the year 2000, no longer controlled by any kind of internationally stan-
dardised validation process to ensure they behave according to the standards
they claim to follow. Can anybody imagine a serious engineering profession
throwing away its quality control procedures for arguably the most important
tool it uses ? If the reader doubts this absolute reliance, it suffices to ask the
question how many developers in practice inspect the output of the compiler ?
Apart from one or two of the most safety-critical, the answer will be ”no” and
even with safety-critical systems, the majority of the generated code will not be
inspected.

The situation is mirrored with operating systems. For a time until Linux
came along, it looked as though the phenomenal reliability of Unix systems
would be simply consigned to the past to be replaced by the all too frequently
unreliable and constantly changing generation of consumer operating systems
where even basic security is wanting. In 2004, the spectacle presents itself
of the world’s most widely used operating system breaking applications in an
attempt to reach even the most basic of acceptable security levels and in so doing
managing to block only incoming traffic whilst effectively disabling an excellent
third-party application which does block bi-directional traffic, [18]. Worse, it
is being deployed in places where its manufacturer specifically denies any form
of suitability such as combat management systems in warships including those
which control nuclear missiles. Here ubiquity is being confused with reliability.

3 The need for relatively slowly moving pro-
cesses

Figure 1 shows the time-honoured method of improving a system by control
process feedback. In essence if a product is produced by some process and the
goal is to improve the product in some way, a complementary property of the
product is measured. For example, if the reliability of the product is to be
improved, its failure rates should be measured. These are then analysed and
the process altered to avoid that particular failure mode.

This procedure is more or less single-handedly responsible for the dramatic
improvements in consumer products described above. It makes one very impor-
tant assumption however: the process must not change too quickly before the
results of the measurements are fed back, otherwise a form of ’drunkard’s walk’
results. Software development of course is beset by rapidly moving processes

3

Figure 1: Control process feedback: the essence of engineering improvement

4

because it is essentially a fashion industry so it may not be so easy to apply
although there are dramatic examples of improvements to code inspections re-
sulting from such use, [3].

4 Potential areas for Forensic Techniques

Where and how can forensic techniques help ? To reiterate, the central require-
ments for any forensic technique are a suitable measurement system, a method
of storing and analysing data and a reasonably slowly moving underlying pro-
cess. Until relatively recently, measurement technology for software controlled
systems was particularly crude or non-existent. Thanks to the efforts of centres
like the Fraunhofer Institutes, [6], on the back of theoretical underpinning such
as is provided by [5], some progress is being made.

The central focus of forensic techniques is the recognition, categorisation and
elimination of defects. In this sense, a defect is a fault which has failed - some
incorrect aspect of the system (a fault) has led to the system behaving in an
unexpected way, (it has failed). Each of these phases has problematic areas.

Recognition On the face of it, recognition sounds the most trivial of phases
and yet most users are familiar with the jokes which prevail about features
versus defects. A defect must cause the system to behave in an unexpected
way by definition but if the user does not have any expectations because the
behaviour is undocumented, is this a defect ?

Categorisation In measurement terms, to be of use forensically, enough prop-
erties of the defect must be recorded. For example, at what stage of the life-cycle
was it injected ? An area of current research is how such categorisations should
be made in order to be of most use for forensic purposes. A defect might require
multiple tags to be of most use. For example a failing division by zero could
provide several forensic leads:-

• A requirements error, for example an attempt to invert a singular matrix
without guards. A forensic response here might be to require all algorithms
with potentially singular behaviour to be specifically treated in some way.

• An error of omission where the specification requires a guard but the
guard is omitted for some reason. A forensic response here might be to
investigate how well engineers guard against unusual conditions and to
investigate if there are other places this might have happened.

• An implementation error where the programmer has simply used the
wrong logic. A forensic response here might be to ask the question why
was such a defect missed by the inspection teams ? Was it inexperience,
(requiring more training) or perhaps an oversight (requiring a process
change) ?

• A missing test. Should there have been a test case to check for this
eventuality ? A suitable forensic response is to investigate the test process
and test education of the engineers.

5

Diagnosis A further requirement for defect analysis is that the fault which
has failed can actually be diagnosed. There is growing evidence, [11], that this
is becoming increasingly more difficult as systems become more complex and
we continue in failing to teach students the importance of failure diagnosis as a
design procedure. If failures can not be related to the faults which caused them,
the failures simply re-occur at some frequency. No discipline which pretends
to the throne of engineering can allow repetitive failure modes to dominate its
systems as is frequently the case with software-controlled systems.

The preceding comments probably understate the difficulty of acquiring high
quality information from a failure as it is compounded by organisational secrecy
when a failure occurs. As an example, on the day of writing this, the UK
based bank Cahoot announced a major security problem which allowed users to
log in to not only their own accounts without a password, but other people’s
accounts as well, [1]. This is one of a long series of Internet banking failures.
The cause was stated to be ”a systems upgrade” and the head of Cahoot bank
stated ”I believe that we need to look closely at our processes”, a deliciously
guarded statement. The bank was down for 10 hours. It is abundantly clear
that the stated cause is completely useless for any kind of forensic work. Whilst
this level of opacity of disseminated information on failure continues, forensic
methods cannot help.1

4.1 Forensic Process Engineering

In forensic process engineering, the focus of attention is on process defects. Of
course the real problem here is that many if not most software projects either,
[15],

• Fail to produce anything at all, or

• Fail to produce the right product, or

• Produce the right product but too late to be of much use

The reasons are essentially human but much can be learned by analysing
process failures, [2]. Even the most basic of process tracking can turn round a
failing project. Figure 2 shows a very useful display for process tracking, this
time on a project which is manifestly going nowhere. The display simply shows
the result of asking the project managers each week for their estimated time to
completion and then plotting this against the date on which the estimate was
made. An ideal project would be a straight line with gradient at least -1. The
reality in this case is very different. It is clear that this project, (an attempt to
unify a graphical widget set portably across several platforms), is going nowhere.
The project managers are simply guessing. The project was restarted under the
following conditions:-

1It later transpired that the initially released statements were somewhat inaccurate. In
fact the cause of the failure was that Cahoot, unlike other banks, enabled completion of
password fields for ’user convenience’. The forensic response is quite correctly to desist from
this practice.

6

Figure 2: A plot of predicted days to finish against the day the prediction was
made before intervention

7

• No individual’s task was allowed to exceed 5 days. The rationale behind
this is that programmers appear to have difficulty estimating much further
than this reliably. Longer tasks had to be broken up until they could
convince the project manager that they were viable,

• The project would be tracked weekly and the results published in this
graphical form and displayed prominently.

The result is shown in Figure 3. The project ran over by 10% but is clearly in
control throughout in stark contrast to Figure 2. This is scarcely rocket science
but is the kind of simple control which is all too often missing in software
projects big and small.

4.2 Forensic Product Engineering

Forensic product engineering simply covers failures of the software product itself.
As was intimated by the divide by zero example above, these may arise for a va-
riety of reasons. However, once again, the primary focus is to identify patterns of
failure leading to preventative methods. There are many opportunities for these
as so many product failures occur repetitively, indeed programming language
development generally fosters them as the following example illustrates.

Precedence Precedence in programming languages is a perfect example of
a repetitive mode failure. Dennis Ritchie one of the original authors of the
C programming language is reported in [17] as identifying commonly occurring
failures as long ago as 1982, based on the precedence table of C 2 having some of
its levels not intuitively ’obvious’. Not only do such failures still occur regularly,
[8], but the C precedence table forms the heart of all the C-like languages
such as C++, Java, Javascript, Tcl/Tk, PHP and Perl developed from C in
subsequent years. As a result the same problems occur in these languages also.
In other words, not only has no particular effort been made to remove this
repeating failure mode (for good reasons at the time) but the problem has been
amplified for reasons of ’backwards compatibility’. Backwards compatibility is
an interesting concept and is largely absent from other engineering disciplines
because it inhibits, and in extreme cases like the IT industry, may entirely
prevent the ability to learn from mistakes. The reader may like to pause a
moment and imagine a world where mainstream engineering industries were
forced to repeat past failures by a policy of backwards compatibility. This
subject is considerably expanded in another paper in preparation by the author.

Note that product failures can be glaringly obvious, such as a program crash
or insidious, leading to subtle but expensively misleading failures. It is the
author’s opinion with some justification, [7], that the output of most significant
mathematical simulations is at least tainted and perhaps fatally compromised
by software failure.

2which has an awe-inspiring 15 levels and is still eclipsed by Perl and PHP which have 21
and 23 levels respectively

8

Figure 3: A plot of predicted days to finish against the day the prediction was
made after project restarted

9

4.3 Forensic Systems Engineering

In this context, the word Systems is used to cover the environment in which
software products are developed and includes but is not limited to:-

• Operating System Environment

• Security

• Arithmetic implementation quality

• Compiler and tool quality

In some cases, forensic work may only serve to reject an alternative rather than
help improve it. This might occur for example, when selecting an operating
system with a mean time between failures of greater than 1000 hours which
currently seems to preclude all but the Unix like operating systems, [9]. In
other cases, forensic work in this area simply overlaps product analysis as with
security where many problems occur because of buffer overflow, a programming
fault. In yet other cases such as with arithmetic implementation or compiler
quality, actions by the community at large such as the decision in April 2000
which essentially terminated independent quality validation of compilers for
programming languages as described earlier, lead to the forensic conclusion that
they be reinstated as quickly as possible or that users of compilers must do it
for themselves. With arithmetic implementation quality, this is at least possible
through publically available downloads of paranoia, [12] or embedded system
paranoia, [10].

5 Data mining and Defect Analysis

Data mining forms an important part of Forensic Software Engineering as po-
tentially useful data is often unstructured. If data is formatted in a text format
such as plain text or some structured form of plain text such as CSV files, XML,
HTML or some other relatively easily accessible format, important information
can often be recovered without too much effort. If on the other hand, data is
buried in the ever-changing binary formats of programs like Microsoft Word,
data mining is effectively crippled and such file formats should never be used to
contain important data.

Defect tracking and analysis is often done poorly and yet defect data is the
single most important source of information a company aspiring to improve
itself can have. In an industry which frequently makes sweeping, unsupported
and regrettably inaccurate statements about the potential of a new technology,
the only thing an organisation can often rely on is its own data and the data
needs to be sufficiently comprehensive to allow improvement strategies to be
extracted, [14]. This is another area in which open source has had an important
impact with the admirable bugzilla, [4].

6 Conclusions

Forensic software engineering is not rocket science but does require a system-
atic approach based around the careful acquisition of failure data, its analysis

10

and subsequent application to discover ways of avoiding failure, ensuring that
a failure of any kind can only happen once. So many things in software devel-
opment today conspire against it, including but not limited to, massive growth
of systems, increased complexity and coupling, poor diagnostic procedures, re-
liance on fashion-based statements rather than measurement-based statements,
continual and frequently unnecessary replacement of technologies - the list is
long. However, the current levels of failure, their potential criticality and their
massive cost, [13], all bear witness to the need to improve our understanding of
the causes of failure in software controlled systems and from that, its effective
prevention.

References

[1] BBC (2004) Cahoot hit by web security scare
http://www.bbc.co.uk/1/hi/business/3984845.stm

[2] Dalcher, D (2004) Software Forensics Centre
http://www.cs.mdx.ac.uk/research/SFC

[3] Gilb, T. and Graham D. (1993) Software Inspections Addison-Wesley, ISBN
0-201-63181-4

[4] Bugzilla (2004) http://www.bugzilla.org/

[5] Fenton, N. Pfleeger, S.L. (1997) Software Metrics PWS, Boston, ISBN
053495425-1

[6] The Fraunhofer Center for empirical software engineering (1997-) http://fc-
md.umd.edu/

[7] Hatton L., Roberts A. (1994) How accurate is scientific software ? IEEE
Transactions on Software Engineering, October 1994.

[8] Hatton L. (1995) Safer C: Developing high-integrity and safety-critical sys-
tems McGraw-Hill, ISBN 0-07-707640-0

[9] Hatton L. (2004a) Forensic Software Engineering Lecture notes:
http://www.leshatton.org/Forensic 1.html

[10] Hatton L. (2004b) Embedded Systems Paranoia: a tool for testing embedded
system arithmetic Information and Software Technology, to appear, 2004

[11] Hatton L. (1999) Repetitive failure, feedback and the lost art of diagnosis
Journal of Systems and Software, (10), October, 1999

[12] Kahan W.M. (1983) Documentation header of the original paranoia
http://research.att.com/ http:/www.catless.ncl.ac.uk/Risks

[13] Neumann, P.G. (2004) The Risks Forum http:/www.catless.ncl.ac.uk/Risks

[14] Pfleeger, S.L., Hatton L., Howell C. (2002) Solid Software Prentice-Hall,
New Jersey, ISBN 0-13-091298-0

11

[15] Royal Academy of Engineering (2004) The challenge of complex IT
projects Royal Academy of Engineering, London, ISBN 1-903496-15-2,
www.raeng.org.uk

[16] Tichy, W.F. (1998) Should computer scientists experiment more ? 16 Rea-
sons to Avoid Experimentation IEEE Computer, 31(5), May 1998, p32-40

[17] van der Linden, P. (1994) Expert C programming: Deep C secrets Prentice-
Hall, New Jersey, ISBN 0-13-177429-8

[18] Zone Alarm (TM) (2004) http://www.zonelabs.com/

12

