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Abstract5

This paper addresses broadly the impact that unprecedented levels
of scientific discovery can have on the emergent global patterns that we
observe in nature. An essentially ubiquitous pattern that is associated
with large complex discrete systems is attributable to the Conservation
of Hartley-Shannon Information (CoHSI). One of the manifestations of10

CoHSI in the realm of protein structure is a distinctive equilibrium dis-
tribution of protein lengths that is dominated by a power law. Here we
examine the manner in which the accelerated pace of novel protein dis-
covery during the Covid-19 pandemic affected this distribution, showing
that despite an initial disruption, nevertheless the equilibrium state was15

reestablished.

1 Introduction

This paper uses a novel approach to study change in the rapidly
evolving and globally accessible TrEMBL protein databases avail-
able at [1].20

The TrEMBL protein databases accumulate the sequenced pro-
teins which result from the efforts of countless teams of researchers
around the planet. After more than 25 years of growth, they are al-
ready extremely large and still growing rapidly with the most recent
release at the time of writing being release 2024 02 dated 27-Mar-25

2024 of UniProtKB/TrEMBL which contains 248,234,451 sequence
entries, comprising 87,367,689,973 amino acids. The proteins vary
in length from the shortest A0A0G2JLF7 HUMAN at just 7 amino
acids all the way up to a staggering 45,354 amino acids in the longest
currently known, A0A5A9P0L4 9TELE.30

Clearly these enormous numbers are effectively intractable in
terms of identifying local patterns, or even phylogenetically shared
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patterns but the discipline of statistical physics over the last 150
years from its origins in the kinetic theory of gases in the hands of
the visionary physicist Ludwig Boltzmann, has produced techniques35

for dealing with such extraordinarily large numbers. Compared with
the number of molecules in 1 cubic meter of gas at standard temper-
ature and pressure (2.68× 1025), even the TrEMBL databases pale
into insignificance. In spite of these vast numbers, the methodology
of statistical physics comfortably handles them automatically aggre-40

gating any and all local mechanisms to go directly to the equilibrium
or most likely distribution. In the case of a gas, the velocities all
asymptote to the Maxwell-Boltzmann distribution [2].

By incorporating information theory into this methodology, [3, 4]
it was shown that all discrete systems (systems composed of count-45

able pieces) sharing only the property that their individual pieces
are distinguishable and requiring no other commonality, exhibit pat-
terns dominated by a power-law. These patterns arise from a con-
servation principle, CoHSI or the Conservation of Hartley-Shannon
Information. If we consider the most basic discrete system that con-50

sists of ordered strings (components) of coloured beads, then from
CoHSI the theoretically predicted length distribution for any dis-
crete system looks like Fig. 1.
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Figure 1: The predicted asymptotic probability distribution function for a set of
strings (components) of coloured beads of various lengths with no other property
than that the different colours are distinguishable. The distribution shows a
sharp unimodal peak transitioning into an extremely precise power-law tail [3].

The presence of this distribution has been identified now in a
wide variety of dissimilar discrete systems - lengths of words in texts,55

number of words in sentences in texts, in large collections of software
irrespective of their language or functionality and most notably for
the purposes of this paper, in proteins [3]. The prior knowledge
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that such an equilibrium distribution of lengths is present in any
substantial collection of proteins guides our novel approach allowing60

us to measure significant departures from that equilibrium state and
understand the reasons for any such departures and this we now do.

Proteins are an exemplary discrete system, in that we can con-
sider them as strings of amino acids, the length of a protein be-
ing measured by the total number of amino acids. The TrEMBL65

database[1] represents essentially the totality of our knowledge of
the structure and diversity of proteins. One might expect that the
distribution of protein lengths would be shaped by natural selec-
tion acting on particular structure/function properties, but whereas
individual proteins will be subject to natural selection in the nor-70

mal way, the overall distribution of the properties of proteins results
from the complex interactions of many processes; natural selection,
genetic drift, random extinctions etc. CoHSI, because of its statis-
tical mechanical framework [3] aggregates all these mechanisms and
predicts a scale-free equilibrium outcome that is simply the over-75

whelmingly most likely state. The theoretically predicted length
distribution for any discrete system looks like Fig. 1.

Thus it was predicted (and borne out experimentally) that the
length distributions of proteins would show the scale-free distribu-
tions implied by CoHSI [3, 5, 4].80

Prior to the Covid-19 pandemic we can clearly see the predicted
CoHSI distribution in protein lengths, for example in the 2017 TrEMBL
release 17-03 (we consider other releases of TrEMBL as this narra-
tive develops) as Figs 2a - 2b. The similarity between the CoHSI
prediction Fig. 1 and the data of Fig. 2a is compelling both visually85

and statistically.
Fig. 2b is a cumulative complementary distribution function [6],

a widely used noise-suppressing display of the same data as Fig. 2a.
The left hand axis is the number of proteins longer than the size
shown on the x-axis. On the left hand side, it is flat corresponding90

to the sharp rise to the peak of Fig. 1. Reading off this plateau
height on the y-axis gives the total number of proteins considered
here, (just under 1 × 108 in release 17-03). As we move right and
the length increases, fewer and fewer proteins are greater than this
length and the data becomes the classic straight line on a log-log95

scale indicating the presence of the predicted power-law. The mere
presence of a straight line is only a necessary condition for a power-
law. For greater statistical confidence, a sufficiency test must also
be run [7, 8]. Details of this are given in [3] where an emphatic
power-law is confirmed.100

In essence the above development establishes Fig. 2b as an equi-
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Figure 2: The distribution of lengths of proteins measured in amino acids in
TrEMBL release 17-03, A) The distribution as a probability distribution func-
tion and B) the distribution as a complementary cumulative distribution func-
tion.

librium distribution, an emergent property shared by all discrete
systems [4]. In the parlance of statistical mechanics, the mathe-
matical framework behind CoHSI, the biochemical properties of the
individual amino acids in the global system of proteins are irrel-105

evant; proteins can be considered as simply consisting of strings
of distinguishable amino acids [3]. This pattern of protein lengths
shown in 2b is by definition an equilibrium distribution and for such
a large distribution, we would normally expect little to disturb this
equilibrium. However, there was extraordinary activity in protein110

discovery, focused on SARS-CoV-2 that took place in 2019 and the
years following as a result of the Covid19 pandemic; in the following
section we explore the impact of this on the equilibrium distribution
of protein lengths.

2 Results and Discussion115

2.1 The TrEMBL database 15-07 → 22-02

Having established that there is an equilibrium distribution in pro-
tein lengths we can study different versions of TrEMBL as the
database grew rapidly in the last few years. Fig. 3 illustrates by tak-
ing five releases 15-07, 17-03, 19-04, 21-03 and 22-02. We may first120

note that the system does indeed closely maintain the equilibrium
distribution until the 21-03 distribution where a break suddenly ap-
pears in the region of protein lengths of 6,500 to 7,500 amino acids.

Looking at this more closely, the break in Fig. 4a is due to an
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Figure 3: Five recent releases of TrEMBL spanning the Covid-19 pandemic of
2020-2022.

A

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1  10  100  1000  10000

A
b

u
n

d
a

n
c
e

 o
f 

p
ro

te
in

s
 i
n

 T
re

m
b

l 
2

1
-0

3

Protein length

B

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 1  10  100  1000  10000

A
b

u
n

d
a

n
c
e

 o
f 

p
ro

te
in

s
 i
n

 T
re

m
b

l 
2

2
-0

2

Protein length

Figure 4: The distribution of lengths of proteins measured in amino acids in
TrEMBL, A) Release 21-03 illustrating the clear departure from the equilibrium
predicted by CoHSI and due to the uploading of considerable selective work
on the SARS-COV-2 virus and B) Release 22-02 12 months later when the
equilibrium was essentially restored.

over-abundance (i.e. relative to the equilibrium distribution) of pro-125

teins with lengths of approximately 7000 amino acids. Fig. 4a shows
that 12 months later the break was already healed and the database
resumed its natural growth trend around the equilibrium distribu-
tion as defined by CoHSI and exhibited in every other TrEMBL
release.130

2.2 Covid-19 and the Equilibrium of Protein Lengths

What happened between TrEMBL releases 21-03 and 22-02 to ex-
plain 1) why the CoHSI equilibrium was perturbed, and 2) how it
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was re-established?
Although the only constraints in CoHSI theory[3] are the total135

size of the system and its total information content, it is neces-
sary that the system be categorized in a consistent manner. In
the case of the TrEMBL database, consistency means that there
is no redundancy in the sequence entries. In other words multi-
ple depositions of proteins with identical amino acid sequence and140

length, and present in the same species (or species equivalent, such
as viral strain) are not permitted. While such redundancy of pro-
tein entries is eliminated by the curation of the database, curation
was relaxed early in the Covid-19 pandemic, when a special portal
https://www.ebi.ac.uk/training/events/uniprot-covid-19-website/, now145

closed, was created by UniProt for the submission of SARS-CoV-
2 sequences. Tens of millions of SARS-CoV-2 protein sequences
have been uploaded to the protein databases, and we note that the
ORF1ab polyprotein of SARS-CoV-2 contains 7096 amino acids.
We suggest that the massive uploading of presumptively redundant150

SARS-CoV-2 sequences resulted in the perturbation of the equilib-
rium seen in TrEMBL release 21-03. The resumption of normal
curation of the database would have eliminated redundancies cre-
ated by this large volume of identical submissions of SARS-CoV-2
proteins, reestablishing the equilibrium as seen in TrEMBL release155

22-02.
Thus while the CoHSI equilibrium as exemplified globally in pro-

tein lengths is remarkably stable, at the same time it is sensitive to
the consistency of categorization as revealed by the unprecedented
number of presumably redundant SARS-CoV-2 sequences that were160

submitted to TrEMBL early in the Covid-19 pandemic.

2.3 The Covid-19 Pandemic in Perspective

While the Covid-19 pandemic perturbed the equilibrium of protein
length distributions, as described above, this resulted from the un-
precedented burst of research into the SARS-CoV-2 virus.165

However, many other aspects of the Covid-19 pandemic also show
power law behaviour, as would be expected from any large, complex
discrete system and as predicted by CoHSI theory[3, 4]. Examples
of power law distributions can be found early in the course of the
pandemic as the infection spread essentially without control and170

before cases began to reach saturation. Blasius[9] examined the
relative size of outbreaks in countries that reported statistics and
showed that both the number of infected people and the number of
deaths displayed power law distributions. Similar results showing
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a power law distribution were reported for Covid-19 fatalities in175

European countries[10]. Blasius[9] also examined the statistics for
SARS-CoV-2 infections and death reported by counties within the
United States; these also showed power law distributions.

These results from the Covid-19 pandemic are not unique; the
general presence of power laws in epidemics of infectious diseases180

has been known for some time[11, 12]; for example Rhodes and
Anderson[11, 13] showed that both the size and duration of measles
epidemics were characterized by power law distributions. It is worth
pointing out that early in the response to the Covid-19 pandemic,
when specific vaccines were first available, levels of immunization185

were highly unequal between countries. As would have been pre-
dicted, the number of individuals immunized within individual coun-
tries was also observed to follow a power law distribution[4].

In conclusion it is reasonable to ask why power laws, as described
here in the impacts of the Covid-19 pandemic are essentially ubiq-190

uitous in the natural world. As reviewed in detail in [4], power
laws are observed in phenomena as diverse as wealth and the fre-
quency of word use, from the size of computer programs to the
quantity of alcohol consumed, and from the growth of oyster shells
to the size of craters on the moon. Logically, there are only two195

possibilities. Either there is a single underlying principle that gen-
erates power law behaviour in complex discrete systems, or there
are many specific local mechanisms that coincidentally generate the
same outcomes, i.e. power law distributions, in very different sys-
tems. CoHSI theory[3, 4] provides a resolution of these two expla-200

nations; complex discrete systems are mechanistically complicated
(and often seemingly random) but regardless of any and all mech-
anisms, distributions dominated by power laws are the essentially
inevitable equilibrium state of these systems.

2.4 Ethics205

No human subjects, human tissues or animals were used in this
research.

2.5 Data Accessibility

This study adheres to the transparency and reproducibility princi-
ples espoused by [14, 15, 16, 17, 18, 19] and includes references to210

all methods and source code necessary to reproduce the results pre-
sented. For this study, the methods and source code are included
in the wider set of reproducibility deliverables, available at https://
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datadryad.org/stash/share/9nVGYwauP_wdFM84hA6GlC52t4pFircx4NAGl_

ukbYA. Each reproducibility deliverable allows all results, tables and215

diagrams to be reproduced individually for that study, as well as per-
forming verification checks on machine environment, availability of
essential open source packages, quality of arithmetic and regression
testing of the outputs [20].
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