
Title Slide

“Failure patterns:
A powerful tool to optimise your testing”

by

Les Hatton

Professor of Forensic Software Engineering,
CISM, Kingston University, UK

lesh@leshatton.org, l.hatton@kingston.ac.uk

Version 1.1: 28/Feb/2007

This presentation is available at http://www.leshatton.org/

©Copyright, L.Hatton, 2007-

v. 1.1, 28/Feb/2007, (slide 1 - 2). Copyright Les Hatton 2007-

Oh bother …

Computer Weekly

17-Jan-2007

v. 1.1, 28/Feb/2007, (slide 1 - 3). Copyright Les Hatton 2007-

To improve a process, you must
• Define a measurable criterion for improvement
• Analyse the measurements regularly to understand

what process changes will lead to improvement

Overall philosophy

For software testing, this means
• We have to have good objective measures. Since a

successful test finds defects, released defects is an
ideal candidate.

• We have to analyse all defects to link them to
deficiencies in the test process, if any.

v. 1.1, 28/Feb/2007, (slide 1 - 4). Copyright Les Hatton 2007-

A useful criterion
• Define a defect as a fault that has failed
• Define an executable line of code (XLOC) as any line

of code which generates an executable statement
• Define asymptotic defect density as the upper bound of

the total number of defects ever found in the product’s
entire life-cycle divided by the lines of code.

How good is good ?

If your asymptotic defect density is < 1 defect per KXLOC
(thousand executable lines of code), you are doing about
as well as has ever been achieved.

v. 1.1, 28/Feb/2007, (slide 1 - 5). Copyright Les Hatton 2007-

NIST (US National Institute of Standards and Technology)
• 2002 report estimating costs of software failure in US alone

at $60 billion per year
• 80% of software development costs are finding and fixing

defects
• Economist Science Technology Quarterly 19/Jun/2003

Royal Academy of Engineering (UK) 2004, reported
• Only 16% of projects in the UK were considered successful
• This suggests that around GBP 17 billion will be wasted in

2003/2004 alone.
• “The challenges of complex IT projects”, 22/Apr/2004

How bad is bad ?

v. 1.1, 28/Feb/2007, (slide 1 - 6). Copyright Les Hatton 2007-

v Where do we start ?
– Aristotleans v. Babylonians: the role of measurement
– Some examples

v Complicating factors
v Measurements and how to test them
v Searching in unstructured texts

Extracting patterns

v. 1.1, 28/Feb/2007, (slide 1 - 7). Copyright Les Hatton 2007-

v Aristotleans …
– Decide everything by deep thought

v Babylonians …
– Learn the hard way by sticking their fingers in light

sockets.

Aristotleans v.
Babylonians

Development is an Aristotlean activity …

… Testing is a Babylonian activity

v. 1.1, 28/Feb/2007, (slide 1 - 8). Copyright Les Hatton 2007-

The role of measurement: an
example from air-traffic control

CAA CDIS air-traffic system

0

5

10

15

20

25

Pre-
delivery

Post-
delivery

19.6

0.58

21

1.61

Formal

Informal

Pe
rc

en
t o

f a
ll

de
fe

ct
s

0

10

20

30

40

50

60

70

Code review Unit testing System /
acceptance

testing

Given: This company thinks formal specifications are wonderful

But before delivery they have
no noticeable effect ! All is revealed: Over-reliance on

dynamic testing to remove defects

v. 1.1, 28/Feb/2007, (slide 1 - 9). Copyright Les Hatton 2007-

Typical defect profiles

Defec t type dis tributions

0

5

10

15

20

25

30

35

Req
uir

em
en

ts
Fun

cti
on

ali
ty

Stru
ctu

ral Data
Im

ple
men

tat
ion

Int
eg

rat
ion

Arch
ite

ctu
re Test

Othe
r, u

nsp
eci

fie
d

Pe
rc

en
ta

ge Em be dde d

Ge ne ra l

OS

Vinter and Poulson (1996)

Defec ts in te s t procedures

0

10

20

30

40

50

60

No r
ele

va
nt

tes
t

Ina
de

qu
ate

 te
st

Unk
no

wn

No t
im

e
Test

 no
t d

on
e

No h
ard

ware
Proc

ess
 fa

ilu
re

Pe
rc

en
ta

ge

OS supplier (2001)

Measure your own !

v. 1.1, 28/Feb/2007, (slide 1 - 10). Copyright Les Hatton 2007-

v Where do we start ?
v Complicating factors

– We should test “systems” as well as software
– Spreadsheets
– The underlying architecture may not be very reliable

v Measurements and how to assess them
v Searching in unstructured texts

Extracting patterns

v. 1.1, 28/Feb/2007, (slide 1 - 11). Copyright Les Hatton 2007-

v Systems inconveniently include human users
v Testing involves testing the system as a whole

– This may include a mixture of computerisation and
additional, poorly documented, time varying and
somewhat erratic human behaviour which we attempt
to assess with usability testing.

The system you test is often not the system which is
used !

We test “systems” as well as
software

v. 1.1, 28/Feb/2007, (slide 1 - 12). Copyright Les Hatton 2007-

v Note the following
– Gas Bill based on two estimates:

u Human sub-system – They now require me to enter my own
reading on their telephone entry system

u Software sub-system – a telephone entry system attached to their
billing database

– My attempts …

British Gas automated gas
meter reading, August 2006

uEnter my account number.
–Accepted without repeating to check

uEnter my gas bill reading
–Repeats to verify and then says “does
not agree with our records”

uEnter same gas bill reading
–Repeats to verify and accepts

v. 1.1, 28/Feb/2007, (slide 1 - 13). Copyright Les Hatton 2007-

v An attempt to transfer money from a company USD
account to a GBP account in the same bank.
– Procedures

u Human sub-systems – System changed without notification to central
facility; new user account number / password system

u Software sub-system – accounts database with additional account
number verification fields

Barclays Bank foreign currency
transaction, September 2006

v. 1.1, 28/Feb/2007, (slide 1 - 14). Copyright Les Hatton 2007-

v An attempt to transfer money from a company USD
account to a GBP account, continued …
– My attempt (a 25 minute phone call altogether)

Barclays Bank foreign currency
transaction, September 2006

uPerson 4:
– Does the transfer. When solicited for direct number it
turns out to be the number I used to call.

uPerson 3:
– Goes through procedures again but cannot do USD -> GBP
transfers so passes me to …

uPerson 2:
– Does the procedures again and then tells me new account
number will reach me in two weeks and passes me to …

uPerson 1
– Goes through normal password procedures and then asks
for account number but does not know what to do if latter
missing so passes me to …

v. 1.1, 28/Feb/2007, (slide 1 - 15). Copyright Les Hatton 2007-

v One of the great liberating applications of the 80s and 90s
v One of the major headaches of the 21st century

– Weird arithmetic
u -x^2+1 != 1-x^2 (Allan Stevens 2005)
u (4/3-1)*3-1 != ((4/3-1)*3-1)

– People keep data in them instead of in databases
u This a major fly in the ointment in most companies because people cannot

exchange data.

– They are hard to test and consequently full of defects
u 90% of all spreadsheets had errors which led to more than 5% error in the

results. Ray Panko (University of Hawaii)

– They are even harder to search for failure patterns

Spreadsheets

v. 1.1, 28/Feb/2007, (slide 1 - 16). Copyright Les Hatton 2007-

0.1

1

10

100

1000

10000

W'95 Macintosh
7.5-8.1

NT 4.0 Linux Sparc
4.1.3c

OS

OS Reliability

Mean Time Between Failures of various operating systems

Hours 2000,
XP

> 50,000 hours

> 400 years
between
failures
reported by
some users
for Linux in
2006

v. 1.1, 28/Feb/2007, (slide 1 - 17). Copyright Les Hatton 2007-

OS Reliability

24.5 million XP crashes per
day

http://www.pcmag.com/article2/0,414
9,1210067,00.asp

5% of Windows Computers
crash more than twice a
day

http://www.nytimes.com/2003/07/25/t
echnology/25SOFT.html

v. 1.1, 28/Feb/2007, (slide 1 - 18). Copyright Les Hatton 2007-

v Where do we start ?
v Complicating factors
v Measurements and how to assess them

– How not to present a result
– How to present a result

v Searching in unstructured texts

Extracting patterns

v. 1.1, 28/Feb/2007, (slide 1 - 19). Copyright Les Hatton 2007-

The proportion of defects found by external users in this
case history of a client server architecture is as follows,
(Hatton (2007), IEEE Computer):-

Case History 1 – How NOT to
present numerical results

Component Proportion of defects
found externally

Proportion of defects
found internally

GUI Client 57.2% 42.8%

Computation Server 39.1% 61.9%

Tentative conclusion:- External users are more sensitive
to defects in GUI clients than in computational servers.

No, we cannot say this reliably !

v. 1.1, 28/Feb/2007, (slide 1 - 20). Copyright Les Hatton 2007-

Use the z-test for proportions and assume as a null hypothesis that the
distribution of defects found externally by users in the GUI client
(pc)and the computation server (ps) are in the same proportion.

Then …

Case History 1 – doing it
properly

)1,0(~
11ˆˆ

21

N

nn
qp

ppz cs

⎭
⎬
⎫

⎩
⎨
⎧

+

−
=

This gives z = -0.84 which is NOT significant.
We cannot reject the null hypothesis and we cannot infer any such

pattern

v. 1.1, 28/Feb/2007, (slide 1 - 21). Copyright Les Hatton 2007-

Be very careful to test results for significance before
using them !

Sometimes, very useful and highly significant patterns
emerge …

Case History 1 – What can we
infer ?

Continued testing after delivery reduces the defect density the user
sees by about half, providing we can update them regularly.

This result is statistically highly significant.

v. 1.1, 28/Feb/2007, (slide 1 - 22). Copyright Les Hatton 2007-

Case History 2 – How good are
we at estimating tasks ?

The difference between
Estimated and Actual times
of maintenance tasks in a
software development
project.

(Hatton (2007) IEEE Computer)

There is very highly significant systematic pessimistic bias
but does it change with time ?

Pessimistic

Optimistic

Time

v. 1.1, 28/Feb/2007, (slide 1 - 23). Copyright Les Hatton 2007-

The average amount by which engineers over-estimated
maintenance tasks in this case history was:-

Case History 2 – Treading
more carefully

Data set Average over-estimate
in hours

First half 2.45

Second half 1.2

Before springing to conclusions, we test it this time …

v. 1.1, 28/Feb/2007, (slide 1 - 24). Copyright Les Hatton 2007-

This time use the z-test for the difference of means in populations, split
the population in half and assume as a null hypothesis that the
systematic bias does not change.

Then …

Case History 2 – How to
present numerical results

)1,0(~

2

2
2

1

2
1

21 N

n
s

n
s

XXz

⎭
⎬
⎫

⎩
⎨
⎧

+

−
=

This gives z = 3.16 which is VERY HIGHLY significant.
We reject the null hypothesis and infer the bias is getting less, since

X1 = 2.45 hours and X2 = 1.2 hours

v. 1.1, 28/Feb/2007, (slide 1 - 25). Copyright Les Hatton 2007-

Referring to the same paper, averaging across all the data
the following are statistically highly significant …

Case History 2 – What can we
infer ?

On average, engineers over-estimate how long maintenance tasks take
(corrective, adaptive or perfective) by about 35%

Engineers systematically over-estimate how long a short task will take
and under-estimate how long a long task will take.

Engineers improve in estimation skills significantly as projects develop.

v. 1.1, 28/Feb/2007, (slide 1 - 26). Copyright Les Hatton 2007-

Code inspections are very widely believed to rely on
checklists for their effectiveness. In a study of 107
teams, Hatton (2007) showed:-

Case History 3 – Another
example where intuition fails

Experiment phase Mean defects found
using checklists

Mean defects found
without checklists

Phase 1 (2005) – 70
teams

13.00 11.09

Phase 2 (2006) – 37
teams

7.18 5.72

Conclusion:- The differences are not statistically
significant individually or collectively

v. 1.1, 28/Feb/2007, (slide 1 - 27). Copyright Les Hatton 2007-

v Where do we start ?
v Complicating factors
v Measurements and how to test them
v Searching in unstructured texts

– Problem: Defect data is usually disorganised
– Searching for relationships in disorganised data

Extracting patterns

v. 1.1, 28/Feb/2007, (slide 1 - 28). Copyright Les Hatton 2007-

The unstructured nature of
typical defect data

v An example from the Common Vulnerabilities
Database, CVE-2006-4304, (454,000 lines, 17Mb of
unstructured English, www.mitre.com):-

“Buffer overflow in the ppp driver in FreeBSD 4.11 to 6.1 and NetBSD
2.0 through 4.0 beta allows remote attackers to cause a denial of
service (panic), obtain sensitive information, and possibly execute
arbitrary code via crafted Link Control Protocol (LCP) packets with an
option length that exceeds the overall length, which triggers the
overflow in (1) pppoe and (2) ippp.”

v. 1.1, 28/Feb/2007, (slide 1 - 29). Copyright Les Hatton 2007-

Chance discovery

Chance discovery is a class of algorithms to discover
relationships in unstructured data. This
implementation uses Persistence Correlation
Analysis and Entropy measures.

http://www.leshatton.org/chance_exe.html
http://www.leshatton.org/chance_20070301.html

v. 1.1, 28/Feb/2007, (slide 1 - 30). Copyright Les Hatton 2007-

Chance discovery – King James
Bible

- Document is 4mb.
- Relationships between ‘ark’ and
‘covenant’.
- Search took 7 secs

www.gutenberg.org

v. 1.1, 28/Feb/2007, (slide 1 - 31). Copyright Les Hatton 2007-

Chance discovery – The
adventures of Sherlock Holmes

Project
Gutenberg
Standard
Header

- Document is 640K.
- Generic search.
- Search took 12 secs

www.gutenberg.org

v. 1.1, 28/Feb/2007, (slide 1 - 32). Copyright Les Hatton 2007-

Chance discovery – the Common
Vulnerabilities Database

CVE
Standard
Header

- Document is 17Mb.
- Generic search.
- Search took 12 mins

www.gutenberg.org

v. 1.1, 28/Feb/2007, (slide 1 - 33). Copyright Les Hatton 2007-

Some failure patterns from the
Common Vulnerabilities Database

Test for vulnerability to direct requests.

Design tests to overflow input buffers – this is the most common failure
recorded.

Interestingly, a highly related failure involves format string vulnerability,
so design tests for these.

Provoking error messages often reveals file paths. Design tests to
provoke each error message. This is particularly true for PHP.

Stack-based buffer overflow are often associated with denial of service.
Design interface tests to provoke these.

v. 1.1, 28/Feb/2007, (slide 1 - 34). Copyright Les Hatton 2007-

Lessons for Testers

Keep careful defect data but be prepared to mine unstructured data

Analyse it for failure patterns which have statistical significance

Use ONLY statistically significant results to improve your tests and your
resource estimation. Be careful ! Differences between individuals

are much larger than differences in technologies

Failure patterns contain vital information because they reflect the user’s
experience

For more information and freely downloadable papers see:-
http://www.leshatton.org/, thanks.

	Title Slide
	Oh bother …
	Overall philosophy
	How good is good ?
	How bad is bad ?
	Extracting patterns
	Aristotleans v. Babylonians
	The role of measurement: an example from air-traffic control
	Typical defect profiles
	Extracting patterns
	We test “systems” as well as software
	British Gas automated gas meter reading, August 2006
	Barclays Bank foreign currency transaction, September 2006
	Barclays Bank foreign currency transaction, September 2006
	Spreadsheets
	OS Reliability
	OS Reliability
	Extracting patterns
	Case History 1 – How NOT to present numerical results
	Case History 1 – doing it properly
	Case History 1 – What can we infer ?
	Case History 2 – How good are we at estimating tasks ?
	Case History 2 – Treading more carefully
	Case History 2 – How to present numerical results
	Case History 2 – What can we infer ?
	Case History 3 – Another example where intuition fails
	Extracting patterns
	The unstructured nature of typical defect data
	Chance discovery
	Chance discovery – King James Bible
	Chance discovery – The adventures of Sherlock Holmes
	Chance discovery – the Common Vulnerabilities Database
	Some failure patterns from the Common Vulnerabilities Database
	Lessons for Testers

