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Nine  years  ago,  I finally  finished  a book  entitled  “Safer  C”, (Hatton  1995).   The
theme  of  this  book  was  not  to  promote  the  use  of  C in  high- integrity  and  safety
critical  systems,  but  simply  to  make  the  point  that  uninhibited  coding   in  this
language  was  entirely  inappropriate  for  such  systems.   However,  if  measures  were
in place  to prevent  the  re- occurrence  of  very  well known  fault  modes  in  this
language,  all the  evidence  suggested  that  C was  just  as  capable  of  producing  high
reliability  systems  as  any  of  the  other  programming  languages .  I defended  this
viewpoint  with  measurements  on  a  large  number  of  released  systems  and  of
course,  we should  never  forget  that  in  spite  of  a  software  process  which  would  be
deemed  chaotic  (level  1) by the  Capability  Maturity  Model,  the  open  source
community  has  voluntarily  produced  one  of  the  most  reliable  complex  applications
in  history  in  this  language,  the  Linux  kernel.   For  example,  on  my  office  systems,  we
have  now  reached  15  server  years  without  any  failures  on  three  different  kernel
releases,  a  level  my  Windows  systems  cannot  even  approach.   We must  also  of
course  not  forget  that  at  the  other  end  of  the  scale,  some  truly  lamentable  systems
have  been  produced  in  the  same  language.

Similar  extremes  exist  in  other  languages.   The  very  best  (0 statically  detectable
faults  per  KXLOC (thousand  executable  lines  of  source  code))  and  the  very  worst
(140  faults  per  KXLOC) I have  ever  seen  came  from  the  same  application  area  in  the
same  programming  language,  Fortran  77,  a  language  refreshingly  free  of  the
dangerously  uncharted  wastelands  of  dynamic  memory  and  object  irritation  which
modern  computer  linguists  like  to  add  to  languages.   Not  so  refreshingly,  the
application  area  was  a  nuclear  reactor  simulation  program  programmed  by two
unconnected  sets  of  engineers,  the  one  highly  knowledgable  and  the  other  entirely
clueless  about  such  dangers.  (These  latter  engineers  told  me  that  this  70,000  line
program  “had  no  bugs  because  they  had  tested  it”.  Truly  hope  beats  eternal  in  the
human  breast.   In essence,  they  had  produced  an  extremely  expensive  random
number  generator.)

As a  forensic  software  engineer,  I find  these  observations  really  interesting  and
with  these  and  other  experiences,  I have  become  more  and  more  convinced  that  we
do  not  have  a  technology  problem  at  all,  we have  an  educational  problem,  writ  very,
very  large.   Indeed,  looking  at  known  sources  of  data  for  different  programming
languages,  humans  tend  to  screw  up  at  similar  rates  in  all  of  them.   The  common
denominator  in  poor  systems  seems  to  be  that  the  engineers  aren't  very  good  and
no  amount  of  process  or  indeed  technological  refinement  can  currently  recover
from  this.  If the  reader  is  a  little  surprised  that  languages  can  be  internationally
standardised  with  potential  fault  modes  embedded  in  them,  that  is  simply  the  way
of  things.   Human  fallibility  and  politics  can  undermine  any  efforts  to  make  things
truly  precise  and  one  of  the  central  roles  of  forensic  engineering  is  learning  how  to
live  with  it.

One  of  the  most  important  educational  steps  in  improving  an  engineering
technology  is  the  recognition  of  previous  failures  and  the  implementation  of



avoidance  procedures  to  bypass  them  in  future.   In this  regard,  the  older  languages
like  Fortran  77,  Ada  83  and  C 90  are  well- charted  territory.   There  is  a  very
considerable  knowledge  base  of  how  defects  are  injected  in  these  languages  and
the  knowledge  has  been  exploited,  principally  in  software  tools  but  equally
importantly  by public  dissemination,  to  help  engineers  avoid  them.   Such  safer
subsetting  is  an  important  contribution  to  more  reliable  systems.   Let  us  take  C for
example.   The  experiments  which  led  to  “Safer  C” suggested  that  a  residual  fault
density  of  around  8 per  KXLOC was  actually  released  and  later  experiments,  for
example  (Pfleeger  and  Hatton  1997),  suggested  that  at  least  3  of  these  would  fail  in
the  life- cycle  of  a  typical  program.   Now, really  good  systems  typically  stay  below  1
fault  that  fails  per  KXLOC through  their  entire  life- cycle,  so  we can  see  straight
away  that  a  safer  subset  is  necessary  (although  certainly  not  sufficient)  to  achieve
such  levels  in  C.  A very  similar  pattern  occurs  in  Fortran.

So where  does  MISRA C fit  into  all  of  this  ?  The  original  MISRA C appeared  in  1998,
(MISRA 1998)  with  the  title  “Guidelines  for  the  use  of  the  C language  in  vehicle
based  software”.   The  body  responsible  was  a  group  of  collaborating  companies
from  the  automotive  industry,  (MISRA is  the  Motor  Industry  Software  Reliability
Association),  and  the  spur  was  the  rapidly  increasing  use  of  C in  embedded
systems  in  general  and  in  automotive  systems  in  particular.   MISRA C 1998,
consisted  of  93  “required  rules”  and  34  “advisory  rules”,  a  total  of  127  rules  which
together  represented  a  significant  step  forward  in  encouraging  engineers  to
understand  the  issues  and  avoid  known  defects  in  the  language.   (To put  this  in
context  for  readers  not  familiar  with  the  nature  of  such  rules,  one  them  (Rule  30)
states  that  uninitialised  objects  shall  not  be  used,  a  fault  mode  afflicting  many
programming  languages).   The  choice  of  the  phrase  “advisory  rule”  is  somewhat
oxymoronic  but  the  intent  was  that  “required  rules”  were  mandatory  unless  a  very
convincing  reason  to  the  contrary  was  given  and  “advisory  rules”  were
recommendations  only.

MISRA C 1998  had  a number  of  drawbacks  unfortunately.   The  rules  themselves  are
noisy  in  the  sense  described  by (Hatton  2004)  leading  to  a  false  positive  to  real
positive  ratio  of  around  60  making  it  rather  difficult  to  see  the  wood  for  the  trees.
Surprisingly,  this  is  good  for  a  programming  standard,  most  of  which  concentrate
on  style  rather  than  substance,  but  there  is  certainly  room  for  improvement.   Part
of  this  noise  is  due  to  rules  which  in  the  harsh  glow  of  hindsight,  could  have  been
more  precisely  worded,  and  part  is  due  to  the  nature  of  the  rules  themselves,  some
of  which  are  not  measurement  suppor ted  and  difficult  to  police,  for  example,  “code
shall  not  be  commented  out”,  Rule  10.   In a  number  of  cases,  it  was  not  easily
possible  to  determine  what  the  rule  actually  meant.   This  led  to  widespread
adoption  of  deviation  policies , an  officially  sanctioned  way  of  ignoring  some  of  the
rules,  the  documenta tion  of  which,  for  a  safety- related  system,  would  necessarily
form  part  of  the  safety  case.   Deviating  all of  the  rules  would  be  frowned  upon  of
course.   Another  unfortunate  side- effect  was  that  “MISRA compliance”  was
rendered  meaningless  as  different  tools  claiming  to  enforce  it  could  and  did  give
radically  different  answers  when  given  the  same  code,  (Parker  2001).

Nevertheless,  this  was  a  commendable  effort  much  better  than  doing  nothing  and
since  1998,  the  original  MISRA C standard  has  become  very  influential  and  is
increasingly  widely  used  in  the  avionic  and  medical  sectors  for  example,  as  well  as
the  original  automotive  industry.   To recognise  this  growing  ubiquity  and  to
address  some  of  the  drawbacks  highlighted  above,  the  original  MISRA committee,



started  preparing  a  second  version  some  three  years  ago  and  this  version  appeared
finally  after  a  great  deal  of  hard  work  in  October  2004,  (MISRA 2004).   Its  title
“Guidelines  for  the  use  of  C language  in  critical  systems”  reflected  this  growing
ubiquity.   My first  reaction  as  an  avid  watcher  of  standards  bloat  was  that  it  is
somewhat  but  not  excessively  bigger  (109  pages  compared  with  69  pages).   MISRA
C 2004  now  contains  141  rules,  caused  by removing  some  of  the  old  rules  and
adding  a larger  number  of  new  ones.   The  rules  have  been  re- numbered  and  in
many  cases  rewritten  and  it  is  hoped  that  this  will  address  at  least  in  part  the
known  problem  areas  alluded  to  above  although  this  has  yet  to  be  tested.   The
committee  has  not  at  the  time  of  writing  formally  defined  a  succession  policy  and
currently  at  least,  an  organisation  can  offer  either  version  in  suppor t  of  its
attempts  to  adhere  to  safer  subsets.   This  is  probably  a  wise  move  as  many
organisations  have  invested  a  significant  amount  of  resources  complying  with
MISRA C 1998  and  may  want  to  reflect  and  await  some  measurement  suppor t
before  committing  to  MISRA C 2004.

The  MISRA C standard  continues  to  move  forward.   In the  short  to  medium  term,  a
set  of  exemplary  test  cases  is  being  produced  by the  committee  to  help  vendors
and  customers  understand  the  scope  and  enforceability  of  the  new  version.
Looking  further  down  the  line,  the  committee  may  have  to  grasp  the  nettle  that  is
ISO C99,  the  latest  standardised  version  of  the  C language,  and  like  so  many  ISO
languages,  standardised  to  the  point  of  extinction,  (although  I hasten  to  add,  this  is
an  entirely  personal  opinion.)

MISRA C 2004  is  the  latest  in  a  significant  effort  to  produce  effective  codes  of
practice  for  engineers  working  with  C in  embedded  control  systems  in  which  failure
is  usually  very  expensive  and  this  continuing  initiative  and  focus  should  be
applauded.   You  might  like  to  reflect  on  that  as  you  drive  home  tonight  half  a
metre  from  a software  controlled  bomb  embedded  in  your  steering  wheel  in  a  car
which  has  very  significant  amounts  of  software  in  the  brakes,  steering,  engine,  and
everywhere  else.   As society  moves  rapidly  towards  complete  dependence  on
embedded  control  systems  containing  large  amounts  of  software,  such  initiatives
will become  increasingly  important.   I wish  there  were  more.
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