
Title Slide
ESCOM 2001

"15 years of measuring the effects of defect on
scientific and other software:

How do we satisfy customers in the long-term ?"

by

Les Hatton

Oakwood Computing Associates, Surrey, U.K. and
the Computing Laboratory, University of Kent

lesh@oakcomp.co.uk

Version 1.1: 15/Feb/2001

©Copyright, L.Hatton, 2001-

OAKWOOD COMPUTING - SURVIVAL AND AVOIDANCE STRATEGIES FOR SOFTWARE FAILURE
.

v. 1.1, 15/Feb/2001, (slide 1 - 2). © L.Hatton, 2001-

Usability = Use Ability

I couldn’t think of anything more to say on
this topic. :-)

Usability

v. 1.1, 15/Feb/2001, (slide 1 - 3). © L.Hatton, 2001-

A personal view of software
failure

1990-92:
T1: ~10 static faults/KLOC
in F77, C. (C++ worse)

1990-1993:
T2: 9-version dynamic experiment.
Only 1 sig. fig. agreement left at end.

1984-1988:
Porting same F77 package
gave 4 sig.fig. agreement
on different platforms.

1995:
Formal methods => 3:1 better
Static fault highly correlated
to dynamic failure.

Size

Defect
Density

1989-1995

1996:
O-O/C++ has 2-3 times corrective
maintenance cost.

1995-1996:
100% statement coverage
often implicated in high-
integrity systems.

1995-1999:
Win’95 1 defect every 42 mins.
Mac - 1 defect every 188 mins.
Linux - Almost never.

1999-:
Necessary and unnecessary
complexity

1997:
Compression and accuracy

1998-1999:
Why do we have so much
repetitive failure in software ?

v. 1.1, 15/Feb/2001, (slide 1 - 4). © L.Hatton, 2001-

Fixing the definitions
– A fault is a statically detectable property

of a piece of code or a design
– A failure is a fault or set of faults which

together cause the system to show
unexpected behaviour at run-time

Preparing the ground

v. 1.1, 15/Feb/2001, (slide 1 - 5). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 6). © L.Hatton, 2001-

The Seismic Kernel System (SKS)
– About a million lines of Fortran 77 developed for

processing seismic data
– Ported to 10 different architectures, Cray down

to Data General with attached FPS array
processor. Porting time about 2 weeks.

– Portable graphics based on GKS
– Inhouse portable meta description language for

array processing.
– Cost about $3million to develop

1984-1988: Portability

v. 1.1, 15/Feb/2001, (slide 1 - 7). © L.Hatton, 2001-

The Seismic Kernel System
– Achieved 4 significant figures of agreement

(eventually*) across all architectures on typical
seismic data processing benchmarks. Single
precision floating point arithmetic used, 32-38
bit.

* The following statement cost 2 of those until it was found
in the middle of a 2-D Fourier Transform:

if (ABS(a-b) .gt. 1E-3) then ...

1984-1988: Portability

v. 1.1, 15/Feb/2001, (slide 1 - 8). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 9). © L.Hatton, 2001-

The T-experiments

Multi-industry study using static inspection,
1990-1992

E-S Aerospace

Single-industry study
using N-version
techniques, 1990-1993

Earth
Science

Nuclear Control

v. 1.1, 15/Feb/2001, (slide 1 - 10). © L.Hatton, 2001-

Stages
– Observed many repeating faults in development of

SKS
– Developed F77 parsing engine to study other

packages, 1988-1992
– Developed C parsing engine to study similar

problems in different language, 1990-1994
– Measured around 100 major systems 1988-1997
– Developed more advanced C parsing engine

1996-2000, restart experiments on embedded
control systems

1988-1997: The T1 Fault
experiments

v. 1.1, 15/Feb/2001, (slide 1 - 11).
©

 L.H
atton, 2001-

F
ault frequencies in C

applications

Weighted faults per 1000 lines.

0 5

10 15 20 25
Graphics

General

Elec-eng

Design

System

Control

Database

Graphics

Parsing

Parsing

Insurance

Utilities

Utilities

Utilities

Control

Comms

Comms

A
verage

of 8

v. 1.1, 15/Feb/2001, (slide 1 - 12). © L.Hatton, 2001-

Fault frequencies in Fortran 77
applications

W
ei

gh
te

d
fa

ul
ts

 p
er

 1
00

0
lin

es
.

0

5

10

15

20

25
ge

ne
ra

l

el
c-

en
g

E
ar

th
S

ci

pa
rs

in
g

C
ad

C
am

C
he

m
M

od

E
ar

th
S

ci

el
c-

en
g

fld
-e

ng

m
ch

-e
ng

m
ch

-e
ng

nu
c-

en
g

nu
c-

en
g

op
er

-r
s

C
ad

C
am

th
e-

ph
ys

G
eo

de
sy

A
er

os
pa

ce

ge
ne

ra
l

Average
of 12

Same application area
one at 140 / KLOC and one
at 0 / KLOC

v. 1.1, 15/Feb/2001, (slide 1 - 13). © L.Hatton, 2001-

Data derived from CAA CDIS

R
es

id
ua

l s
er

io
us

 s
ta

tic
 fa

ul
ts

pe
r

K
LO

C

0
0.5

1
1.5

2
2.5

3
3.5

4

Average
dynamic
testing

Thorough
dynamic
testing

Where and how do faults
fail historically ?

This study shows that statically detectable faults do in fact fail
during the life-cycle of the software.

v. 1.1, 15/Feb/2001, (slide 1 - 14). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 15). © L.Hatton, 2001-

Stages
– An observation: Failure experiments are REALLY

expensive compared with fault experiments
– “T2” experiment, 1990-1993

u Funded by Enterprise Oil plc in the UK
u Compared the output of 9 packages all in Fortran 77 developed

independently
u Carried out with a colleague Andy Roberts

1990-1996: Failure
experiments

v. 1.1, 15/Feb/2001, (slide 1 - 16). © L.Hatton, 2001-

T2 details
– 9 independently developed commercial versions of

same ~750,000 F77 package of signal processing
algorithms.

– Same input data tapes.
– Same processing parameters, (46 page monitored

specification document).
– All algorithms published with precise specification,

(e.g. FFT, deconvolution, finite-difference wave-
equation solutions, tridiagonal matrix inversions
and so on).

– All companies had detailed QA and testing
procedures.

v. 1.1, 15/Feb/2001, (slide 1 - 17). © L.Hatton, 2001-

v Overall goals were:
– To estimate the magnitude of disagreement.
– To see what form disagreement took.
– To identify poorly implemented processes.
– To attempt to improve agreement by

feedback confirming nature of fault.
– To preserve complete confidentiality.

Basic goals of T2 experiment

v. 1.1, 15/Feb/2001, (slide 1 - 18). © L.Hatton, 2001-

Data analysis

v Analysis goals were:
– Analyse at 14 "primary" calibration points and

20 "secondary" calibration points.
– Analyse data in multiple windows.
– Use two sets of independently developed

analysis software to improve confidence.

v. 1.1, 15/Feb/2001, (slide 1 - 19). © L.Hatton, 2001-

Similarity v. coordinate: No
feedback

v. 1.1, 15/Feb/2001, (slide 1 - 20). © L.Hatton, 2001-

Defect example 1: feedback
detail

v. 1.1, 15/Feb/2001, (slide 1 - 21). © L.Hatton, 2001-

Similarity v. coordinate:
Feedback to company 8

v. 1.1, 15/Feb/2001, (slide 1 - 22). © L.Hatton, 2001-

Defect example 2: feedback
detail

v. 1.1, 15/Feb/2001, (slide 1 - 23). © L.Hatton, 2001-

Similarity v. coordinate:
Feedback to company 3

v. 1.1, 15/Feb/2001, (slide 1 - 24). © L.Hatton, 2001-

The end product: 9 subtly
different views of the geology

v. 1.1, 15/Feb/2001, (slide 1 - 25). © L.Hatton, 2001-

T2 Results

v The accompanying slides illustrate:
– Only 1-2 significant figures agreement after

processing.
– Disagreement is non-random and alternate

views seem equally plausible
– Feedback of anomalies along with other

evidence confirms source of disagreement as
software failure.

v. 1.1, 15/Feb/2001, (slide 1 - 26). © L.Hatton, 2001-

A summary of 10 years of
failure experiments

Seismic processing software environment Number of significant
figures agreement

32 bit floating point arithmetic. 6

Same software on different platforms, same
data.

4

Same software on same platform, 5-1 lossy
compression.

3-4

Same software subjected to continual
'enhancement'

1-2

T2: different software, same specs, same data,
same language, same parameters.

1

v. 1.1, 15/Feb/2001, (slide 1 - 27). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 28). © L.Hatton, 2001-

Stages
– How and when do faults fail ?
– Does Mathematics help - the Heathrow air-traffic

control system

1996-1997: Correlating
fault and failure

v. 1.1, 15/Feb/2001, (slide 1 - 29). © L.Hatton, 2001-

All faults

Those faults
which fail

Where and how do faults
fail historically ?

v. 1.1, 15/Feb/2001, (slide 1 - 30). © L.Hatton, 2001-

Mean time to fail in Adams
(1984)

Mean time to fail

0

5

10

15

20

25

30

35

1.6 5 16 50 160 500 1600 5000

Years

P
er

ce
nt

ag
e

of
 a

ll
fa

ul
ts

v. 1.1, 15/Feb/2001, (slide 1 - 31). © L.Hatton, 2001-

The balance between static
and dynamic testing

Imagine two scenarios of 7x24x365 use:-
– Air-traffic control system, 20 copies

u After 25 years, 80% of the faults which could fail have not
yet had time to fail according to Adam’s data - only 500
execution years are accumulated

– Embedded control system, 1,000,000 copies
u 5000 execution year failures occur after two days.

v. 1.1, 15/Feb/2001, (slide 1 - 32). © L.Hatton, 2001-

The balance between static and
dynamic testing

All faults

Those faults
which fail in
systems of
average use

Those faults
which fail in
systems of
heavy use

v. 1.1, 15/Feb/2001, (slide 1 - 33). © L.Hatton, 2001-

The balance between static
and dynamic testing

Conclusion:
– For systems which are shipped in large

numbers such as embedded control systems or
web page software, static testing is even more
important than for ordinary systems

v. 1.1, 15/Feb/2001, (slide 1 - 34). © L.Hatton, 2001-

CAA CDIS air-traffic system
Fa

ul
ts

 p
er

 K
LO

C

0

5

10

15

20

25

Pre-
delivery

Post-
delivery

19.6

0.58

21

1.61

Formal

Informal

Does mathematics help ?

v. 1.1, 15/Feb/2001, (slide 1 - 35). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 36). © L.Hatton, 2001-

Points to consider
– Software Process
– Development paradigms, for example OO
– Control process feedback

1995-2000: Does paradigm
shift help ?

v. 1.1, 15/Feb/2001, (slide 1 - 37). © L.Hatton, 2001-

Points to consider
– There is an inherent belief that a good process

implies a good product
– Why is Linux so good ?

u Linux is categorically CMM level 1 so is the CMM wrong or
does Open Source development have important properties that
we don’t understand well yet ?

u Is the reliability of Linux incremental ?

Software Process

v. 1.1, 15/Feb/2001, (slide 1 - 38). © L.Hatton, 2001-

0.1

1

10

100

1000

10000

W'95 Macintosh
7.5-8.1

NT 4.0 Linux Sparc
4.1.3c

OS

M
TB

F
(h

rs
)

Software Process and Linux

Mean Time Between Failures of various operating systems

v. 1.1, 15/Feb/2001, (slide 1 - 39). © L.Hatton, 2001-

Measurement feedback on OO
development, (Humphrey)

Relative time to fix defects in C++
v. Pascal (Humphrey)

R
el

at
iv

e
tim

e
to

 fi
x

0

10

20

30

40

50

60

Code
review

Unit
testing

After
unit

testing

Pascal

C++

v. 1.1, 15/Feb/2001, (slide 1 - 40). © L.Hatton, 2001-

Measurement feedback on
OO development, (Hatton)

P
er

ce
nt

 o
f a

ll
fix

es

0

10

20

30

40

50

60

70

80

90

100
<

1
ho

ur

<
2

ho
ur

s

<
5

ho
ur

s

<
10

 h
ou

rs

<
20

 h
ou

rs

<
50

 h
ou

rs

<
10

0
ho

ur
s

<
20

0
ho

ur
s

C++

C

v. 1.1, 15/Feb/2001, (slide 1 - 41). © L.Hatton, 2001-

Measurement feedback
on OO development

Summary of known measurements

• C++ OO systems have comparable defect
densities to conventional C or Pascal systems.

• Each defect in a C++ OO system takes about
twice as long to fix as in a conventional system.
 This is true for both simple defects AND
difficult ones. The whole distribution is right
shifted.

• Components using inheritance have been
observed to have 6 times the defect density.

How much of this is attributable to C++ is unknown.

v. 1.1, 15/Feb/2001, (slide 1 - 42). © L.Hatton, 2001-

Control Process feedback - the
essence of engineering
improvement

Process Product

Measure samples
of product for

quality

Feed-back into
Process to
improve it

If you want to improve reliability, measure and
analyse failures.

v. 1.1, 15/Feb/2001, (slide 1 - 43). © L.Hatton, 2001-

Overview

v Paradigm shift is characterised by:-
– Fashion / marketing focus
– Creativity driven
– The complete absence of measurement
– Maximises things the engineer CAN do.

v Control process feedback is characterised by:-
– Engineering focus
– Measurement and analysis of failure
– Ruthless elimination of known failure modes
– Maximises things the engineer can NOT do.

v. 1.1, 15/Feb/2001, (slide 1 - 44). © L.Hatton, 2001-

v 1984-1988: Portability experiments
v 1988-1997: Fault experiments
v 1990-1996: Failure experiments
v 1996-1997: Correlating fault and failure
v 1995-2000: Does paradigm shift help ?
v 2001-: Some interesting questions

Overview

v. 1.1, 15/Feb/2001, (slide 1 - 45). © L.Hatton, 2001-

Points to consider
– Can we reverse or even halt linguistic decay ?:

Aristotleans v. Babylonians
– Why do defects cluster and/or why are they not

linearly distributed ?
– Necessary and unnecessary complexity

2001-: Some interesting
questions

v. 1.1, 15/Feb/2001, (slide 1 - 46). © L.Hatton, 2001-

In my career, I have been forced to write programs in:-
u Focal
u Atlas Autocode
u Algol
u Assembler
u Fortran 66, 77
u C
u Pascal
u Ada (briefly)
u C++
u Java
u Various scripting languages, Perl, Tcl/Tk, Bash, Javascript
u C again, (this time from choice)

12 changes in 32 years; average is 32/12 = 2.7 years

Linguistic decay

v. 1.1, 15/Feb/2001, (slide 1 - 47). © L.Hatton, 2001-

Why languages can’t improve

ADD NEW
FEATURES

Re-
standardise
language

Recognise poor
features

Feedback
crippled by
backwards

compatibility

Using the model of control process feedback, we see that
the feedback stage is crippled by the “shall not break old
code” rule or “backwards compatibility” as it is more
commonly known.

v. 1.1, 15/Feb/2001, (slide 1 - 48). © L.Hatton, 2001-

An example: C itself

Type of poorly-
defined behaviour

ISO C90 ISO C99

Unspecified 22 49

Undefined 97 191

Implementation-
def ined

76 111

Locale-specif ic 6 15

Total 201 366

Defect reports 119 ???

v. 1.1, 15/Feb/2001, (slide 1 - 49). © L.Hatton, 2001-

All the following languages inherit at least some of C’s
built-in defects, often most:-
– C++: In ISOC++99, we also find the words:-

u Undefined, 1825 times
u Unspecified, 1259 times.

– Javascript: Even precedence was not defined
explicitly

– Java: Removed some defects, added some new ones
– Perl: 21 levels of precedence ...

IEC 1131: another new standard:
– Removes need to declare variables first ‘for

programmer flexibility’

Even new languages
struggle:-

v. 1.1, 15/Feb/2001, (slide 1 - 50). © L.Hatton, 2001-

Defect clustering

Logarithmic Quadratic

Average size in statements

Fa
ul

ts

0

2

4

6

8

10

12

14

16

18

60

10
0

16
0

25
0

40
0

63
0

10
00

20
00

C&W Ada

Moller Columbus

Prediction

Note the non-linear growth. Why does it grow so slowly ?

v. 1.1, 15/Feb/2001, (slide 1 - 51). © L.Hatton, 2001-

Necessary and unnecessary
complexity

v In the Knight-Leveson (1986) experiment:-
– 27 versions of the same algorithm were

developed independently in Pascal
– The smallest had around 300 lines and the

largest was over 1000 lines.
– The most reliable did not fail in 1 million trials,

the least reliable failed nearly 10,000 times.
v AT&T in the ‘70s and ‘80s:-

– it was frequently observed that rewriting the
same algorithm 2 or 3 times reduced the size by
about the same factor, e.g. diff.

v. 1.1, 15/Feb/2001, (slide 1 - 52). © L.Hatton, 2001-

Summary

To conclude:
– On the negative side

u We are ignoring systematic errors in our software and known ways
of detecting them

u Our languages do not seem to be improving. They just change
u There is too little measurement based feedback
u Different defect types have different signal-to-noise

– On the positive side
u There are some exciting possibilities for improvement

v. 1.1, 15/Feb/2001, (slide 1 - 53). © L.Hatton, 2001-

References

• Hatton, L. et. al. (1988). “SKS: an exercise in large-scale Fortran portability”, Software Practice
and Experience, 18(4), p. 301-329.

• Hatton, L. and Roberts A. (1994) “How accurate is scientific software”, IEEE TSE, 20(10), p. 785-
797.

• Hatton, L. (1995) “Safer C: Developing for High-Integrity and Safety-Critical Systems. McGraw-
Hill, ISBN 0-07-707640-0.

• Hatton, L. (1997a) Re-examining the fault density - component size connection, IEEE Software,
March-April 1997.

• Hatton, L. (1997b) The T experiments: errors in scientific software, IEEE Computational Science
& Engineering, vol 4, 2

• Hatton, L. (1998) Does OO sync with the way we think ?, IEEE Software, May/June 1997
• Humphreys, W. (1995) “A discipline of software engineering”, Addison-Wesley, ISBN 0-201-

54610-8
• Kinght, J.C. and Leveson, N. (1986) “An experimental evaluation of the assumption of

independence in multi-version programming”, IEEE TSE, 12(1), p. 96-109
• Pfleeger, S and Hatton L. (1997) “Investigating the influence of formal methods”, IEEE Computer,

30(2), p. 33-43.

