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Trends

Recent trends in the automobile industry 
include:-
– Very rapidly growing software 

deployment
– Software deployment in critical areas
– Use of floating point arithmetic
– The use of C as a standard replacement 

language for assembler
– Recognition of the need for safer 

language subsets
– Very high cost of failure
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Rapidly growing software 
deployment

It is widely recognised that consumer 
embedded software systems have been 
doubling in size every 18 months.

• Cars have gone from around 50,000 lines of 
assembler to around 250,000 lines of C in 
around 5 years, a faster rate of growth than the 
average.
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Use in critical areas

As well as ‘cosmetic’ areas like memory seats 
and in-car entertainment, software is now 
widely deployed in critical areas such as:-

• Air-bags, where the complexity has increased 
by about a factor of 10 in 3 years to address 
multiple airbags, side as well as front impact, 
risk to small passengers and other issues.

• Braking systems
• Engine management systems
• Accelerator and other pedal control
• Steering
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Use of floating point 
arithmetic

Driving forces:-
• The demands of modern engine management 

and emission control and other issues such as 
navigation require very sophisticated algorithms

• The wide availability of micro-processors with 
embedded and highly efficient floating point 
arithmetic
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The use of C as a standard 
language

Driving forces:-
• Need for a high-level language
• Wide availability of compilers for embedded 

micro-processors
• The most efficient high-level language of all in 

terms of both space and performance, a critical 
factor when shipped systems are numbered in 
the millions.

• Internationally standardised as C90 and now 
C99 and capable of validation to this standard
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Recognition of the need for
subsetting

Driving forces:-
• The appearance of C in critical systems
• The cost of failure
• Established published work on the need for

subsetting in critical systems which helped to 
form the basis for the very widely known 
standard MISRA-C
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High cost of failure

• 22/July/1999.  General Motors has to recall 3.5 
million vehicles because of a software defect.  
Stopping distances were extended by 15-20 
metres.

• Federal investigators received almost 11,000 
complaints as well reports of 2,111 crashes and 
293 injuries.

• Recall costs ?  (An exercise for the reader).
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High cost of failure

Cost of fixing defects

0

10

20

30

40

50

60

70

80

90

100

R
eq

ui
re

m
en

t
s D

es
ig

n

C
od

in
g

U
ni

t t
es

tin
g

A
cc

ep
ta

nc
e

te
st

in
g

O
pe

ra
tio

n

Low
High

Embedded systems tend to follow the high curve.
Data from Boehm, (1981) and many others.
Note that curve kicks only around coding stage.
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Some example C 
standards

v MISRA™ (April 1998)
v NUREG CR-6463 (1996)

MISRA-C is a trademark of the Motor Industry Research Association
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MISRA - a high-
quality C standard

v In April 1998, the Motor Industry Software 
Research Association (MISRA) published a 
set of C guidelines for use in vehicle-based 
software.
– 93 rules + 34 guidelines
– Consistent with development to SIL3
– Highly enforceable
– Publicly available
– Based on reference works such as Koenig 

(1989) and Hatton (1995)
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MISRA - a high-
quality C standard

Cate gory Rule s Guide line s
Environment 1 3
Character Sets 4 0
Comments 1 1
Identifiers 1 1
Types 3 2
Constants 1 1
Declara tions  and
Definitions

6 4

Initia lisa tion 3 0
Operators 7 3
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MISRA - a high-
quality C standard

Cate gory Rule s Guide line s
Convers ions 2 1
Express ions 2 4
Control Flow 11 5
Functions 15 4
Pre-process ing
directives

10 3

Pointers  and arrays 5 2
Structures  and Unions 6 0
Standard Libraries 14 0
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MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable
– (Example: Rule 99, All uses of the #pragma

directive shall be documented and explained)
v The standard is cross-referenced against the 

ISO C 9899 standard for traceability
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MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable
– (Example: Rule 99, All uses of the #pragma

directive shall be documented and explained)
v The standard is cross-referenced against the 

ISO C 9899 standard for traceability
v Rule 1 of MISRA C requires ISO C 9899 

conformance so any supporting tool should 
also be checked against FIPS 160, (Official C 
validation suite)
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MISRA - a high-
quality C standard

v About 5% of the rules are not correct or are 
redundant as they are already within ISO C 
9899

v Some of the rules are not statically 
enforceable.  For example, Rule 4 states that 
there should be provision for run-time 
checking

v It is consistent with C90 but now needs 
upgrading for C99
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MISRA acceptance

v MISRA is gaining rapid industry acceptance
– It was developed by a consortium of vendors 

including Ford, Lucas and Rover (now BMW)
– It is the only standard of its kind in the world
– It promotes provably good practice
– It is probably close to achieving ‘critical mass’
– It is strongly supported by MIRA, (Motor 

Industry Research Association)
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MISRA tool support

v The standard now has tool support with a 
number of manufacturers providing checking 
tools, including
– Assent, which only checks for MISRA
– QAC ™, a C static checker which has a 

MISRA mode as an optional extra
– The Safer C ™ Toolset, which includes a 

MISRA checking mode as standard but also 
contains a complete MISRA compliance suite 
and a reference section for engineers.
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NUREG CR-6463

v Sponsored by the US Nuclear Regulatory 
Commission

v Guidelines for Ada, C/C++, PLC Ladder Logic, 
IEC 1131 sequential function charts, Pascal, 
PL/M

v C discussed with C++ pages 4-1 to 4-64
v Written in the form of an essay with examples 

so quite difficult to enforce.
v Rules and guidelines not clearly 

distinguished.
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Useful links

v On MISRA:-
– http://www.misra.org.uk/
– http://www.oakcomp.co.uk/, (MISRA compliance 

validation)
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Possible future directions

The following have been discussed in general 
embedded systems work:-

• Higher-level design systems generating C
• Use of Java
• Use of C++, (and EC++)
• Use of C99
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Higher level design 
systems

v Advantages
– Closer to the design process

v Disadvantages
– Code generation is not very good
– There is a tendency to modify the generated 

code, making things worse not better
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Use of Java

v Advantages
– Simple and fashionable
– Allows use of OO directly within language
– Trys to control some of the worst features of C and C++

v Disadvantages
– Inherently very inefficient compared with either C or C++ 

even when compiled
– New failure modes as yet unknown
– Not internationally standardised so its use is a risk in 

critical systems
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Use of C++

v Advantages
– Allows object orientation to be directly used within the 

language
– EC++ subset exists

v Disadvantages
– Inefficient compared with compiled C both in terms of 

space and performance
– Failure modes as yet unknown
– OO systems in C++ have some disturbing characteristics
– Very large amount of undefined behaviour in ISO C++99, 

(the word ‘undefined’ appears 1825 times for example)
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Measurement feedback on 
object-orientation

Relative time to fix defects in C++
v. Pascal (Humphrey)
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Measurement feedback on 
object-orientation
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Measurement feedback 
on object-orientation

Summary of known measurements
• C++ OO systems have comparable defect 

densities to conventional C or Pascal systems
• Each defect in a C++ OO system takes about 

twice as long to fix as a conventional system.  
This is true for both simple defects AND difficult 
ones.  The whole distribution is right shifted

• Components using inheritance have been 
observed to have 6 times the defect density

How much of this is attributable to C++ is unknown.
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Use of C99

v Advantages
– C90 no longer officially exists
– The C committee now has a special group

targetted at standardising C extensions for 
embedded systems

v Disadvantages
– Twice as many undefined and unspecified 

items in C99 (366) as with C90 (197)
– New failure modes still unknown
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Which direction ?

v Summary:-
– As of ISO/IEC JTC 1/SC22 meeting, 24-27 Aug, 1998.

u “recognising increasing divergence of C and C++ user communities,
WG14 (C) and WG21 (C++) no longer have to remain ‘compatible’
although are urged to cooperate where possible”.

u C90 -> C99 is being targetted on embedded systems and C++ on 
general OO systems

– OO systems in C++ are fine unless you make a 
mistake and then it is more expensive to fix

– Java seems doomed to remain inefficient and its 
arithmetic is highly criticised by Kahan and others.

v C90 -> C99 seems to be the dominant trend
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Conclusions

– The auto industry will continue to use software in 
growing quantities with a million lines in a car likely in 
the next 3-5 years putting very big demands on 
software quality

– The demand for more sophisticated algorithms will 
lead to much greater use of floating point arithmetic

– Most systems will be continue to be produced in C 
although with a greater percentage automatically 
generated by tools

– Networking both in cars and amongst cars will grow 
dramatically

– The cost of failure will remain very high
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