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Trends

Recent trends in the automobile industry
Include:-

— Very rapidly growing software
deployment

— Software deployment in critical areas
— Use of floating point arithmetic

— The use of C as a standard replacement
language for assembler

— Recognition of the need for safer
language subsets

— Very high cost of failure |
g
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Rapidly growing software
deployment

It is widely recognised that consumer
embedded software systems have been
doubling in size every 18 months.

e (Cars have gone from around 50,000 lines of
assembler to around 250,000 lines of C In
around 5 years, a faster rate of growth than the
average.
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Use in critical areas

As well as ‘cosmetic’ areas like memory seats
and in-car entertainment, software is now
widely deployed in critical areas such as:-

 Air-bags, where the complexity has increased
by about a factor of 10 in 3 years to address
multiple airbags, side as well as front impact,
risk to small passengers and other issues.

e Braking systems

 Engine management systems

e Accelerator and other pedal control
e Steering &
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Use of floating point
arithmetic

Driving forces:-

« The demands of modern engine management
and emission control and other issues such as
navigation require very sophisticated algorithms

 The wide availability of micro-processors with
embedded and highly efficient floating point
arithmetic
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The use of C as a standard
language

Driving forces:-
 Need for a high-level language

 Wide availablility of compilers for embedded
MICro-processors

 The most efficient high-level language of all in
terms of both space and performance, a critical
factor when shipped systems are numbered in
the millions.

 Internationally standardised as C90 and now
C99 and capable of validation to this standard
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Recognition of the need for
subsetting

Driving forces:-
« The appearance of C in critical systems
 The cost of failure

« Established published work on the need for
subsetting In critical systems which helped to
form the basis for the very widely known
standard MISRA-C
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High cost of failure

e 22/July/1999. General Motors has to recall 3.5
million vehicles because of a software defect.
Stopping distances were extended by 15-20
metres.

 Federal investigators received almost 11,000
complaints as well reports of 2,111 crashes and
293 Injuries.

 Recall costs ? (An exercise for the reader).
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High cost of failure

Cost of fixing defects
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Embedded systems tend to follow the high curve.

Data from Boehm, (1981) and many others.

Note that curve kicks only around coding stage. ﬁ
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Some example C
standards

v MISRA™ (April 1998)
v NUREG CR-6463 (1996)

MISRA-C is a trademark of the Motor Industry Research Association

o
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MISRA - a high-
quality C standard

v In April 1998, the Motor Industry Software
Research Association (MISRA) published a
set of C guidelines for use in vehicle-based
software.

— 93 rules + 34 guidelines

— Consistent with development to SIL3
— Highly enforceable

— Publicly available

— Based on reference works such as Koenig
(1989) and Hatton (1995)
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MISRA - a high-

quality C standard

Category Rules Guidelines
Environment 1 3
Character Sets 4 0
Comments 1 1
Identifiers 1 1
Types 3 2
Constants 1 1
Declarations and 6 4
Definitions
Initialisation 3 0
Operators 7 3
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MISRA - a high-

quality C standard

Category Rules Guidelines

Conversions 2 1
Expressions 2 4
Control Flow 11 5
Functions 15 4
Pre-processing 10 3
directives

Pointers and arrays 5 2
Structures and Unions | 6 0
Standard Libraries 14 0
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MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable

— (Example: Rule 99, All uses of the #pragma
directive shall be documented and explained)

v The standard is cross-referenced against the
ISO C 9899 standard for traceability
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MISRA - a high-
quality C standard

v. 1.1, 24/Mar/2000 , (slide 1 - 17). Copying permitted freely

v Around 5-10% NOT automatically enforceable

— (Example: Rule 99, All uses of the #pragma
directive shall be documented and explained)

v The standard is cross-referenced against the
ISO C 9899 standard for traceability

v Rule 1 of MISRA C requires ISO C 9899
conformance so any supporting tool should
also be checked against FIPS 160, (Official C
validation suite)
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MISRA - a high-
quality C standard

v. 1.1, 24/Mar/2000 , (slide 1 - 18). Copying permitted freely

v About 5% of the rules are not correct or are
redundant as they are already within ISO C
9899

v Some of the rules are not statically
enforceable. For example, Rule 4 states that
there should be provision for run-time
checking

v It is consistent with C90 but now needs
upgrading for C99
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MISRA acceptance

v MISRA is gaining rapid industry acceptance

— It was developed by a consortium of vendors
Including Ford, Lucas and Rover (now BMW)

— It is the only standard of its kind in the world
— It promotes provably good practice
— It is probably close to achieving “critical mass’

— It is strongly supported by MIRA, (Motor
Industry Research Association)
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MISRA tool support

v The standard now has tool support with a
number of manufacturers providing checking
tools, including

— Assent, which only checks for MISRA

— QAC ™ a C static checker which has a
MISRA mode as an optional extra

— The Safer C ™ Toolset, which includes a
MISRA checking mode as standard but also
contains a complete MISRA compliance suite
and a reference section for engineers.
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NUREG CR-6463

v Sponsored by the US Nuclear Regulatory
Commission

v Guidelines for Ada, C/C++, PLC Ladder Logic,
IEC 1131 sequential function charts, Pascal,
PL/M

v Cdiscussed with C++ pages 4-1to 4-64

v Written in the form of an essay with examples
so quite difficult to enforce.

v Rules and guidelines not clearly
distinguished.
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Useful links

v On MISRA:-

— http://www.misra.org.uk/
— http:/lwww.oakcomp.co.uk/, (MISRA compliance

validation)
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Possible future directions

The following have been discussed in general
embedded systems work:-

 Higher-level design systems generating C
« Use of Java

« Use of C++, (and EC++)

« Use of C99
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Higher level design
systems

v Advantages
— Closer to the design process
v Disadvantages
— Code generation is not very good

— There Is a tendency to modify the generated
code, making things worse not better
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Use of Java

v Advantages

— Simple and fashionable

— Allows use of OO directly within language

— Trys to control some of the worst features of C and C++
v Disadvantages

— Inherently very inefficient compared with either C or C++
even when compiled

— New failure modes as yet unknown

— Not internationally standardised so its use is a risk In
critical systems
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Use of C++

v Advantages

— Allows object orientation to be directly used within the
language
— EC++ subset exists
v Disadvantages

— Inefficient compared with compiled C both in terms of
space and performance

— Failure modes as yet unknown
— OO systems in C++ have some disturbing characteristics

— Very large amount of undefined behaviour in ISO C++99,
(the word ‘undefined’ appears 1825 times for example)i.m
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Measurement feedback on
object-orientation

Relative time to fix defects in C++
v. Pascal (Humphrey)
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This data is due to Humphrey, (1995)
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Measurement feedback on
object-orientation
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Measurement feedback
on object-orientation

Summary of known measurements

« C++ OO0 systems have comparable defect
densities to conventional C or Pascal systems

« Each defect in a C++ OO system takes about
twice as long to fix as a conventional system.
This is true for both simple defects AND difficult
ones. The whole distribution is right shifted

« Components using inheritance have been
observed to have 6 times the defect density

How much of this is attributable to C++ is unknown.
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Use of C99

v Advantages
— C90 no longer officially exists

— The C committee now has a special group
targetted at standardising C extensions for
embedded systems

v Disadvantages

— Twice as many undefined and unspecified
items in C99 (366) as with C90 (197)

— New fallure modes still unknown
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Which direction ?

v Summary:-
— As of ISO/IEC JTC 1/SC22 meeting, 24-27 Aug, 1998.

u “recognising increasing divergence of C and C++ user communities,
WG14 (C) and WG21 (C++) no longer have to remain ‘compatible’
although are urged to cooperate where possible”.

u C90 -> C99 is being targetted on embedded systems and C++ on
general OO systems

— OO systems in C++ are fine unless you make a
mistake and then it is more expensive to fix

— Java seems doomed to remain inefficient and its
arithmetic is highly criticised by Kahan and others.

v C90 -> C99 seems to be the dominant trend
PR
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Conclusions

— The auto industry will continue to use software In
growing guantities with a million lines in a car likely in
the next 3-5 years putting very big demands on
software quality

— The demand for more sophisticated algorithms will
lead to much greater use of floating point arithmetic

— Most systems will be continue to be produced in C
although with a greater percentage automatically
generated by tools

— Networking both in cars and amongst cars will grow
dramatically

— The cost of failure will remain very high &3
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