
Title Slide

2000-

"Software quality and the
world automobile industry"

by

Les Hatton

Oakwood Computing, Surrey, U.K. and
the Computing Laboratory, University of Kent

lesh@oakcomp.co.uk

Version 1.1: 24/Mar/2000

©Copyright, L.Hatton, 2000-

OAKWOOD COMPUTING - SURVIVAL AND AVOIDANCE STRATEGIES FOR SOFTWARE FAILURE
.

v. 1.1, 24/Mar/2000 , (slide 1 - 2). Copying permitted freely © L.Hatton, 2000-

Overview

v Overview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 3). Copying permitted freely © L.Hatton, 2000-

Trends

Recent trends in the automobile industry
include:-
– Very rapidly growing software

deployment
– Software deployment in critical areas
– Use of floating point arithmetic
– The use of C as a standard replacement

language for assembler
– Recognition of the need for safer

language subsets
– Very high cost of failure

v. 1.1, 24/Mar/2000 , (slide 1 - 4). Copying permitted freely © L.Hatton, 2000-

Rapidly growing software
deployment

It is widely recognised that consumer
embedded software systems have been
doubling in size every 18 months.

• Cars have gone from around 50,000 lines of
assembler to around 250,000 lines of C in
around 5 years, a faster rate of growth than the
average.

v. 1.1, 24/Mar/2000 , (slide 1 - 5). Copying permitted freely © L.Hatton, 2000-

Use in critical areas

As well as ‘cosmetic’ areas like memory seats
and in-car entertainment, software is now
widely deployed in critical areas such as:-

• Air-bags, where the complexity has increased
by about a factor of 10 in 3 years to address
multiple airbags, side as well as front impact,
risk to small passengers and other issues.

• Braking systems
• Engine management systems
• Accelerator and other pedal control
• Steering

v. 1.1, 24/Mar/2000 , (slide 1 - 6). Copying permitted freely © L.Hatton, 2000-

Use of floating point
arithmetic

Driving forces:-
• The demands of modern engine management

and emission control and other issues such as
navigation require very sophisticated algorithms

• The wide availability of micro-processors with
embedded and highly efficient floating point
arithmetic

v. 1.1, 24/Mar/2000 , (slide 1 - 7). Copying permitted freely © L.Hatton, 2000-

The use of C as a standard
language

Driving forces:-
• Need for a high-level language
• Wide availability of compilers for embedded

micro-processors
• The most efficient high-level language of all in

terms of both space and performance, a critical
factor when shipped systems are numbered in
the millions.

• Internationally standardised as C90 and now
C99 and capable of validation to this standard

v. 1.1, 24/Mar/2000 , (slide 1 - 8). Copying permitted freely © L.Hatton, 2000-

Recognition of the need for
subsetting

Driving forces:-
• The appearance of C in critical systems
• The cost of failure
• Established published work on the need for

subsetting in critical systems which helped to
form the basis for the very widely known
standard MISRA-C

v. 1.1, 24/Mar/2000 , (slide 1 - 9). Copying permitted freely © L.Hatton, 2000-

High cost of failure

• 22/July/1999. General Motors has to recall 3.5
million vehicles because of a software defect.
Stopping distances were extended by 15-20
metres.

• Federal investigators received almost 11,000
complaints as well reports of 2,111 crashes and
293 injuries.

• Recall costs ? (An exercise for the reader).

v. 1.1, 24/Mar/2000 , (slide 1 - 10). Copying permitted freely © L.Hatton, 2000-

High cost of failure

Cost of fixing defects

0

10

20

30

40

50

60

70

80

90

100

R
eq

ui
re

m
en

t
s D

es
ig

n

C
od

in
g

U
ni

t t
es

tin
g

A
cc

ep
ta

nc
e

te
st

in
g

O
pe

ra
tio

n

Low
High

Embedded systems tend to follow the high curve.
Data from Boehm, (1981) and many others.
Note that curve kicks only around coding stage.

v. 1.1, 24/Mar/2000 , (slide 1 - 11). Copying permitted freely © L.Hatton, 2000-

Overview

v Overview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 12). Copying permitted freely © L.Hatton, 2000-

Some example C
standards

v MISRA™ (April 1998)
v NUREG CR-6463 (1996)

MISRA-C is a trademark of the Motor Industry Research Association

v. 1.1, 24/Mar/2000 , (slide 1 - 13). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

v In April 1998, the Motor Industry Software
Research Association (MISRA) published a
set of C guidelines for use in vehicle-based
software.
– 93 rules + 34 guidelines
– Consistent with development to SIL3
– Highly enforceable
– Publicly available
– Based on reference works such as Koenig

(1989) and Hatton (1995)

v. 1.1, 24/Mar/2000 , (slide 1 - 14). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

Cate gory Rule s Guide line s
Environment 1 3
Character Sets 4 0
Comments 1 1
Identifiers 1 1
Types 3 2
Constants 1 1
Declara tions and
Definitions

6 4

Initia lisa tion 3 0
Operators 7 3

v. 1.1, 24/Mar/2000 , (slide 1 - 15). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

Cate gory Rule s Guide line s
Convers ions 2 1
Express ions 2 4
Control Flow 11 5
Functions 15 4
Pre-process ing
directives

10 3

Pointers and arrays 5 2
Structures and Unions 6 0
Standard Libraries 14 0

v. 1.1, 24/Mar/2000 , (slide 1 - 16). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable
– (Example: Rule 99, All uses of the #pragma

directive shall be documented and explained)
v The standard is cross-referenced against the

ISO C 9899 standard for traceability

v. 1.1, 24/Mar/2000 , (slide 1 - 17). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable
– (Example: Rule 99, All uses of the #pragma

directive shall be documented and explained)
v The standard is cross-referenced against the

ISO C 9899 standard for traceability
v Rule 1 of MISRA C requires ISO C 9899

conformance so any supporting tool should
also be checked against FIPS 160, (Official C
validation suite)

v. 1.1, 24/Mar/2000 , (slide 1 - 18). Copying permitted freely © L.Hatton, 2000-

MISRA - a high-
quality C standard

v About 5% of the rules are not correct or are
redundant as they are already within ISO C
9899

v Some of the rules are not statically
enforceable. For example, Rule 4 states that
there should be provision for run-time
checking

v It is consistent with C90 but now needs
upgrading for C99

v. 1.1, 24/Mar/2000 , (slide 1 - 19). Copying permitted freely © L.Hatton, 2000-

MISRA acceptance

v MISRA is gaining rapid industry acceptance
– It was developed by a consortium of vendors

including Ford, Lucas and Rover (now BMW)
– It is the only standard of its kind in the world
– It promotes provably good practice
– It is probably close to achieving ‘critical mass’
– It is strongly supported by MIRA, (Motor

Industry Research Association)

v. 1.1, 24/Mar/2000 , (slide 1 - 20). Copying permitted freely © L.Hatton, 2000-

MISRA tool support

v The standard now has tool support with a
number of manufacturers providing checking
tools, including
– Assent, which only checks for MISRA
– QAC ™, a C static checker which has a

MISRA mode as an optional extra
– The Safer C ™ Toolset, which includes a

MISRA checking mode as standard but also
contains a complete MISRA compliance suite
and a reference section for engineers.

v. 1.1, 24/Mar/2000 , (slide 1 - 21). Copying permitted freely © L.Hatton, 2000-

NUREG CR-6463

v Sponsored by the US Nuclear Regulatory
Commission

v Guidelines for Ada, C/C++, PLC Ladder Logic,
IEC 1131 sequential function charts, Pascal,
PL/M

v C discussed with C++ pages 4-1 to 4-64
v Written in the form of an essay with examples

so quite difficult to enforce.
v Rules and guidelines not clearly

distinguished.

v. 1.1, 24/Mar/2000 , (slide 1 - 22). Copying permitted freely © L.Hatton, 2000-

Useful links

v On MISRA:-
– http://www.misra.org.uk/
– http://www.oakcomp.co.uk/, (MISRA compliance

validation)

v. 1.1, 24/Mar/2000 , (slide 1 - 23). Copying permitted freely © L.Hatton, 2000-

Overview

v Overview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 24). Copying permitted freely © L.Hatton, 2000-

Possible future directions

The following have been discussed in general
embedded systems work:-

• Higher-level design systems generating C
• Use of Java
• Use of C++, (and EC++)
• Use of C99

v. 1.1, 24/Mar/2000 , (slide 1 - 25). Copying permitted freely © L.Hatton, 2000-

Higher level design
systems

v Advantages
– Closer to the design process

v Disadvantages
– Code generation is not very good
– There is a tendency to modify the generated

code, making things worse not better

v. 1.1, 24/Mar/2000 , (slide 1 - 26). Copying permitted freely © L.Hatton, 2000-

Use of Java

v Advantages
– Simple and fashionable
– Allows use of OO directly within language
– Trys to control some of the worst features of C and C++

v Disadvantages
– Inherently very inefficient compared with either C or C++

even when compiled
– New failure modes as yet unknown
– Not internationally standardised so its use is a risk in

critical systems

v. 1.1, 24/Mar/2000 , (slide 1 - 27). Copying permitted freely © L.Hatton, 2000-

Use of C++

v Advantages
– Allows object orientation to be directly used within the

language
– EC++ subset exists

v Disadvantages
– Inefficient compared with compiled C both in terms of

space and performance
– Failure modes as yet unknown
– OO systems in C++ have some disturbing characteristics
– Very large amount of undefined behaviour in ISO C++99,

(the word ‘undefined’ appears 1825 times for example)

v. 1.1, 24/Mar/2000 , (slide 1 - 28). Copying permitted freely © L.Hatton, 2000-

Measurement feedback on
object-orientation

Relative time to fix defects in C++
v. Pascal (Humphrey)

0

10

20

30

40

50

60

Code
review

Unit
testing

After
unit

testing

Pascal

C++

This data is due to Humphrey, (1995)

v. 1.1, 24/Mar/2000 , (slide 1 - 29). Copying permitted freely © L.Hatton, 2000-

Measurement feedback on
object-orientation

0

10

20

30

40

50

60

70

80

90

100

<
1

ho
ur

<
2

ho
ur

s

<
5

ho
ur

s

<
10

 h
ou

rs

<
20

 h
ou

rs

<
50

 h
ou

rs

<
10

0
ho

ur
s

<
20

0
ho

ur
s

C++

C

This data is due to Hatton, (1998)

v. 1.1, 24/Mar/2000 , (slide 1 - 30). Copying permitted freely © L.Hatton, 2000-

Measurement feedback
on object-orientation

Summary of known measurements
• C++ OO systems have comparable defect

densities to conventional C or Pascal systems
• Each defect in a C++ OO system takes about

twice as long to fix as a conventional system.
This is true for both simple defects AND difficult
ones. The whole distribution is right shifted

• Components using inheritance have been
observed to have 6 times the defect density

How much of this is attributable to C++ is unknown.

v. 1.1, 24/Mar/2000 , (slide 1 - 31). Copying permitted freely © L.Hatton, 2000-

Use of C99

v Advantages
– C90 no longer officially exists
– The C committee now has a special group

targetted at standardising C extensions for
embedded systems

v Disadvantages
– Twice as many undefined and unspecified

items in C99 (366) as with C90 (197)
– New failure modes still unknown

v. 1.1, 24/Mar/2000 , (slide 1 - 32). Copying permitted freely © L.Hatton, 2000-

Which direction ?

v Summary:-
– As of ISO/IEC JTC 1/SC22 meeting, 24-27 Aug, 1998.

u “recognising increasing divergence of C and C++ user communities,
WG14 (C) and WG21 (C++) no longer have to remain ‘compatible’
although are urged to cooperate where possible”.

u C90 -> C99 is being targetted on embedded systems and C++ on
general OO systems

– OO systems in C++ are fine unless you make a
mistake and then it is more expensive to fix

– Java seems doomed to remain inefficient and its
arithmetic is highly criticised by Kahan and others.

v C90 -> C99 seems to be the dominant trend

v. 1.1, 24/Mar/2000 , (slide 1 - 33). Copying permitted freely © L.Hatton, 2000-

Conclusions

– The auto industry will continue to use software in
growing quantities with a million lines in a car likely in
the next 3-5 years putting very big demands on
software quality

– The demand for more sophisticated algorithms will
lead to much greater use of floating point arithmetic

– Most systems will be continue to be produced in C
although with a greater percentage automatically
generated by tools

– Networking both in cars and amongst cars will grow
dramatically

– The cost of failure will remain very high

v. 1.1, 24/Mar/2000 , (slide 1 - 34). Copying permitted freely © L.Hatton, 2000-

Bibliography
• Bach, R. (1997) “Test automation snake oil”, 14th annual conference on Testing Computer

Software, Washington, USA
• Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold.
• Brettschneider, (1989) “Is your software ready for release ?”, IEEE Software, July, p. 100-108
• Fagan, M.E. (1976) “Design and code inspections to reduce errors in program development”, IBM

Systems Journal, 15(3), p. 182-211.
• Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman and Hall.
• Genuchten, M. v. (1991). Towards a Software Factory. Eindhoven.
• Gilb, T. & Graham D. (1993) Software Inspection, Addison-Wesley
• Grady, R. B. and D. L. Caswell (1987). Software Metrics: Establishing a Company-Wide Program.

Englewood Cliffs, N.J., Prentice-Hall.
• Graham, D. (1995) “A software inspection (failure) story”, EuroStar’95, London, November
• Hatton, L. et. al. (1988). “SKS: an exercise in large-scale Fortran portability”, Software Practice

and Experience.
• Hatton, L. (1995) “Safer C: Developing for High-Integrity and Safety-Critical Systems. McGraw-

Hill, ISBN 0-07-707640-0.
• Hatton, L. (1997) Re-examining the fault density - component size connection, IEEE Software,

March-April 1997.
• Hatton, L. (1997) The T experiments: errors in scientific software, IEEE Computational Science &

Engineering, vol 4, 2
• Hatton, L. (1998) Does OO sync with the way we think ?, IEEE Software, May/June 1997
• Hatton, L. (2000) “Software failure: avoiding the avoidable and living with the rest”, Addison-

Wesley, to appear in 2000.
• Humphreys, W. (1995) “A discipline of software engineering”, Addison-Wesley, ISBN 0-201-

54610-8

v. 1.1, 24/Mar/2000 , (slide 1 - 35). Copying permitted freely © L.Hatton, 2000-

Bibliography

• IEC 61508 (1991). Software for computers in the application of industrial safety-related systems.
International Electrotechnical Commission: Drafts only - cannot yet be referenced.

• Kahan, W., Darcy, J.D.(1998) “How Java’s Floating-Point Hurts Everyone Everywhere”, ACM
1998 workshop on Java, Stanford California

• Knight, J. C., A. G. Cass, et al. (1994). Testing a safety-critical application. International
Symposium on Software Testing and Analysis (ISSTA'94), Seattle, ACM.

• Kolawa, A. (1999) “Mutation Testing: a new approach to automatic error detection”, StarEast ‘99,
Orlando, May 1999

• Liedtke, C, and Ebert, H. (1995), “On the benefits of reinforcing code inspection activities”,
EuroStar’95, London

• Leveson, N. (1995). “Safeware: System Safety and Computers.” Addison-Wesley, ISBN 0-201-
11972-2.

• Littlewood, B. and L. Strigini (1992). “Validation of Ultra-High Dependability for Software-based
Systems.” Comm ACM to be published:

• McCabe, T. A. (1976). “A complexity measure.” IEEE Trans Soft. Eng. SE-2(4): 308-320.
• Mills, H.D. (1972) “On the statistical validation of computer programs”, IBM Federal Systems

Division. Gaithersburg, MD, Red. 72-6015, 1972
• Myers, G. J. (1979). The Art of Software Testing. New York, John Wiley & Sons.
• Nejmeh, B. A. (1988). “NPATH: A measure of execution path complexity and its applications.”

Comm ACM 31(2): 188-200.
• Parnas, D. L., J. v. Schouwen, et al. (1990). “Evaluation of Safety-Critical Software.” Comm ACM

33(6): 636-648.

v. 1.1, 24/Mar/2000 , (slide 1 - 36). Copying permitted freely © L.Hatton, 2000-

Bibliography

• Pfleeger, S and Hatton L. (1997) “How well do Formal Methods work ?”, IEEE Computer, Ian
1997.

• Pfleeger, S. (1998) “Measurement and testing: doing more with less”, ICTCS’98, Washington.
• Porter, A.A., Siy, H.P., Toman, C.A., Votta, L.G. (1997) “An experiment to assess the cost-

benefits of code inspections in large scale software development”, IEEE Transactions, 23(6), p.
329-345

• Roper, M. (1999) “Problems, Pitfalls and Prospects for OO Code Review”, EuroStar’ 99,
Barcelona, November

• Veevers, A. and A. C. Marshall (1994). “A relationship between software coverage metrics and
reliability.” Software Testing, Verification and Reliability 4(1): 3-8.

• Vinter, O. and Poulsen, P-M (1996) “Improving the software process and test efficiency”, ESSI
Project 10438, http://www.esi.es/ESSI/Reports/All/10438

• Warnier, J. D. (1974). Precis de logique informatique: les procedures de traitement et leurs
donnees. H.E. Stenfert Kroesse.

• Woodward, M. R., D. Hedley, et al. (1980). “Experience with path analysis and testing of
programs.” IEEE Transactions 6(3): 278-286.

	Title Slide
	Overview
	Trends
	Rapidly growing software deployment
	Use in critical areas
	Use of floating point arithmetic
	The use of C as a standard language
	Recognition of the need for subsetting
	High cost of failure
	High cost of failure
	Overview
	Some example C standards
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA acceptance
	MISRA tool support
	NUREG CR-6463
	Useful links
	Overview
	Possible future directions
	Higher level design systems
	Use of Java
	Use of C++
	Measurement feedback on object-orientation
	Measurement feedback on object-orientation
	Measurement feedback on object-orientation
	Use of C99
	Which direction ?
	Conclusions
	Bibliography
	Bibliography
	Bibliography

