OAKWOOD COMPUTING - SURVIVAL AND AVOIDANCE STRATEGIES FOR SOFTWARE FAILURE

2000-

"Software quality and the
world automobile industry”

by
Les Hatton

Oakwood Computing, Surrey, U.K. and
the Computing Laboratory, University of Kent
lesh@oakcomp.co.uk

Version 1.1: 24/Mar/2000

©Copyright, L.Hatton, 2000-




Overview

v QOverview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 2). Copying permitted freely

|

© L.Hatton, 2000- EE




Trends

Recent trends in the automobile industry
Include:-

— Very rapidly growing software
deployment

— Software deployment in critical areas
— Use of floating point arithmetic

— The use of C as a standard replacement
language for assembler

— Recognition of the need for safer
language subsets

— Very high cost of failure |
g
v. 1.1, 24/Mar/2000, (slide 1 - 3). Copying permitted freely © L.Hatton, 2000- .




Rapidly growing software
deployment

It is widely recognised that consumer
embedded software systems have been
doubling in size every 18 months.

e (Cars have gone from around 50,000 lines of
assembler to around 250,000 lines of C In
around 5 years, a faster rate of growth than the
average.

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 4). Copying permitted freely © L.Hatton, 2000- &«




Use in critical areas

As well as ‘cosmetic’ areas like memory seats
and in-car entertainment, software is now
widely deployed in critical areas such as:-

 Air-bags, where the complexity has increased
by about a factor of 10 in 3 years to address
multiple airbags, side as well as front impact,
risk to small passengers and other issues.

e Braking systems

 Engine management systems

e Accelerator and other pedal control
e Steering &

v. 1.1, 24/Mar/2000 , (slide 1 - 5). Copying permitted freely © L.Hatton, 2000- &‘




Use of floating point
arithmetic

Driving forces:-

« The demands of modern engine management
and emission control and other issues such as
navigation require very sophisticated algorithms

 The wide availability of micro-processors with
embedded and highly efficient floating point
arithmetic

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 6). Copying permitted freely © L.Hatton, 2000- &«




The use of C as a standard
language

Driving forces:-
 Need for a high-level language

 Wide availablility of compilers for embedded
MICro-processors

 The most efficient high-level language of all in
terms of both space and performance, a critical
factor when shipped systems are numbered in
the millions.

 Internationally standardised as C90 and now
C99 and capable of validation to this standard

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 7). Copying permitted freely © L.Hatton, 2000- &«




Recognition of the need for
subsetting

Driving forces:-
« The appearance of C in critical systems
 The cost of failure

« Established published work on the need for
subsetting In critical systems which helped to
form the basis for the very widely known
standard MISRA-C

& f
v. 1.1, 24/Mar/2000 , (slide 1 - 8). Copying permitted freely © L.Hatton, 2000- .




High cost of failure

e 22/July/1999. General Motors has to recall 3.5
million vehicles because of a software defect.
Stopping distances were extended by 15-20
metres.

 Federal investigators received almost 11,000
complaints as well reports of 2,111 crashes and
293 Injuries.

 Recall costs ? (An exercise for the reader).

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 9). Copying permitted freely © L.Hatton, 2000- &‘




High cost of failure

Cost of fixing defects

100
90
80
70
60

—— Low

50
—#— High

40
30
20
10

Requirement
Design
Coding -

Unit testing
Acceptance
testing

Operation

Embedded systems tend to follow the high curve.

Data from Boehm, (1981) and many others.

Note that curve kicks only around coding stage. ﬁ
© L.Hatton, 2000-

v. 1.1, 24/Mar/2000 , (slide 1 - 10). Copying permitted freely




Overview

v Overview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 11). Copying permitted freely

|

© L.Hatton, 2000- EE




Some example C
standards

v MISRA™ (April 1998)
v NUREG CR-6463 (1996)

MISRA-C is a trademark of the Motor Industry Research Association

o
v. 1.1, 24/Mar/2000, (slide 1 - 12). Copying permitted freely © L.Hatton, 2000- ﬁ




MISRA - a high-
quality C standard

v In April 1998, the Motor Industry Software
Research Association (MISRA) published a
set of C guidelines for use in vehicle-based
software.

— 93 rules + 34 guidelines

— Consistent with development to SIL3
— Highly enforceable

— Publicly available

— Based on reference works such as Koenig
(1989) and Hatton (1995)

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 13). Copying permitted freely © L.Hatton, 2000- &«




MISRA - a high-

quality C standard

Category Rules Guidelines
Environment 1 3
Character Sets 4 0
Comments 1 1
Identifiers 1 1
Types 3 2
Constants 1 1
Declarations and 6 4
Definitions
Initialisation 3 0
Operators 7 3

v. 1.1, 24/Mar/2000 , (slide 1 - 14). Copying permitted freely

© L.Hatton, 2000- EE




MISRA - a high-

quality C standard

Category Rules Guidelines

Conversions 2 1
Expressions 2 4
Control Flow 11 5
Functions 15 4
Pre-processing 10 3
directives

Pointers and arrays 5 2
Structures and Unions | 6 0
Standard Libraries 14 0

v. 1.1, 24/Mar/2000 , (slide 1 - 15). Copying permitted freely

© L.Hatton, 2000- EE




MISRA - a high-
quality C standard

v Around 5-10% NOT automatically enforceable

— (Example: Rule 99, All uses of the #pragma
directive shall be documented and explained)

v The standard is cross-referenced against the
ISO C 9899 standard for traceability

& f
v. 1.1, 24/Mar/2000, (slide 1 - 16). Copying permitted freely © L.Hatton, 2000- .




MISRA - a high-
quality C standard

v. 1.1, 24/Mar/2000 , (slide 1 - 17). Copying permitted freely

v Around 5-10% NOT automatically enforceable

— (Example: Rule 99, All uses of the #pragma
directive shall be documented and explained)

v The standard is cross-referenced against the
ISO C 9899 standard for traceability

v Rule 1 of MISRA C requires ISO C 9899
conformance so any supporting tool should
also be checked against FIPS 160, (Official C
validation suite)

Sa0h

© L.Hatton, 2000- &‘




MISRA - a high-
quality C standard

v. 1.1, 24/Mar/2000 , (slide 1 - 18). Copying permitted freely

v About 5% of the rules are not correct or are
redundant as they are already within ISO C
9899

v Some of the rules are not statically
enforceable. For example, Rule 4 states that
there should be provision for run-time
checking

v It is consistent with C90 but now needs
upgrading for C99

P )

© L.Hatton, 2000- &‘




MISRA acceptance

v MISRA is gaining rapid industry acceptance

— It was developed by a consortium of vendors
Including Ford, Lucas and Rover (now BMW)

— It is the only standard of its kind in the world
— It promotes provably good practice
— It is probably close to achieving “critical mass’

— It is strongly supported by MIRA, (Motor
Industry Research Association)

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 19). Copying permitted freely © L.Hatton, 2000- &‘




MISRA tool support

v The standard now has tool support with a
number of manufacturers providing checking
tools, including

— Assent, which only checks for MISRA

— QAC ™ a C static checker which has a
MISRA mode as an optional extra

— The Safer C ™ Toolset, which includes a
MISRA checking mode as standard but also
contains a complete MISRA compliance suite
and a reference section for engineers.

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 20). Copying permitted freely © L.Hatton, 2000- &«




NUREG CR-6463

v Sponsored by the US Nuclear Regulatory
Commission

v Guidelines for Ada, C/C++, PLC Ladder Logic,
IEC 1131 sequential function charts, Pascal,
PL/M

v Cdiscussed with C++ pages 4-1to 4-64

v Written in the form of an essay with examples
so quite difficult to enforce.

v Rules and guidelines not clearly
distinguished.

Sa0h

v. 1.1, 24/Mar/2000, (slide 1 - 21). Copying permitted freely © L.Hatton, 2000- &‘




Useful links

v On MISRA:-

— http://www.misra.org.uk/
— http:/lwww.oakcomp.co.uk/, (MISRA compliance

validation)

v. 1.1, 24/Mar/2000 , (slide 1 - 22). Copying permitted freely

[
© L.Hatton, 2000- EE




Overview

v Overview
v MISRA-C
v Future trends

v. 1.1, 24/Mar/2000 , (slide 1 - 23). Copying permitted freely

|

© L.Hatton, 2000- EE




Possible future directions

The following have been discussed in general
embedded systems work:-

 Higher-level design systems generating C
« Use of Java

« Use of C++, (and EC++)

« Use of C99

i i .
v. 1.1, 24/Mar/2000 , (slide 1 - 24). Copying permitted freely © L.Hatton, 2000- E




Higher level design
systems

v Advantages
— Closer to the design process
v Disadvantages
— Code generation is not very good

— There Is a tendency to modify the generated
code, making things worse not better

& f
v. 1.1, 24/Mar/2000 , (slide 1 - 25). Copying permitted freely © L.Hatton, 2000- ;




Use of Java

v Advantages

— Simple and fashionable

— Allows use of OO directly within language

— Trys to control some of the worst features of C and C++
v Disadvantages

— Inherently very inefficient compared with either C or C++
even when compiled

— New failure modes as yet unknown

— Not internationally standardised so its use is a risk In
critical systems

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 26). Copying permitted freely © L.Hatton, 2000- &«




Use of C++

v Advantages

— Allows object orientation to be directly used within the
language
— EC++ subset exists
v Disadvantages

— Inefficient compared with compiled C both in terms of
space and performance

— Failure modes as yet unknown
— OO systems in C++ have some disturbing characteristics

— Very large amount of undefined behaviour in ISO C++99,
(the word ‘undefined’ appears 1825 times for example)i.m

v. 1.1, 24/Mar/2000 , (slide 1 - 27). Copying permitted freely © L.Hatton, 2000- &‘




Measurement feedback on
object-orientation

Relative time to fix defects in C++
v. Pascal (Humphrey)

60 T
50 T

40 T O pascal
30 +

20 T O ce

10 T
0 t ,_ t
Code Unit After

review testing unit
testing

This data is due to Humphrey, (1995)

|

v. 1.1, 24/Mar/2000 , (slide 1 - 28). Copying permitted freely © L.Hatton, 2000- ﬁ




Measurement feedback on
object-orientation

100 -
90 -
80 -
70 -
60 -
50 -
40
30 =
20

P
10 -

1 1 1
Ll Ll Ll
= n n
> w w w
5] 5 5 5 5 5 2 £
= o o o o o 8 8
— < < <= = = = e
v N o o o o o o
\Y; \Y, — N Lo o =]
\Y% \ \" — N
\Y \"

This data is due to Hatton, (1998)

|

© L.Hatton, 2000- EE

v. 1.1, 24/Mar/2000 , (slide 1 - 29). Copying permitted freely




Measurement feedback
on object-orientation

Summary of known measurements

« C++ OO0 systems have comparable defect
densities to conventional C or Pascal systems

« Each defect in a C++ OO system takes about
twice as long to fix as a conventional system.
This is true for both simple defects AND difficult
ones. The whole distribution is right shifted

« Components using inheritance have been
observed to have 6 times the defect density

How much of this is attributable to C++ is unknown.

P )

v. 1.1, 24/Mar/2000 , (slide 1 - 30). Copying permitted freely © L.Hatton, 2000- &«




Use of C99

v Advantages
— C90 no longer officially exists

— The C committee now has a special group
targetted at standardising C extensions for
embedded systems

v Disadvantages

— Twice as many undefined and unspecified
items in C99 (366) as with C90 (197)

— New fallure modes still unknown

& f
v. 1.1, 24/Mar/2000 , (slide 1 - 31). Copying permitted freely © L.Hatton, 2000- .




Which direction ?

v Summary:-
— As of ISO/IEC JTC 1/SC22 meeting, 24-27 Aug, 1998.

u “recognising increasing divergence of C and C++ user communities,
WG14 (C) and WG21 (C++) no longer have to remain ‘compatible’
although are urged to cooperate where possible”.

u C90 -> C99 is being targetted on embedded systems and C++ on
general OO systems

— OO systems in C++ are fine unless you make a
mistake and then it is more expensive to fix

— Java seems doomed to remain inefficient and its
arithmetic is highly criticised by Kahan and others.

v C90 -> C99 seems to be the dominant trend
PR

v. 1.1, 24/Mar/2000 , (slide 1 - 32). Copying permitted freely © L.Hatton, 2000- &‘




Conclusions

— The auto industry will continue to use software In
growing guantities with a million lines in a car likely in
the next 3-5 years putting very big demands on
software quality

— The demand for more sophisticated algorithms will
lead to much greater use of floating point arithmetic

— Most systems will be continue to be produced in C
although with a greater percentage automatically
generated by tools

— Networking both in cars and amongst cars will grow
dramatically

— The cost of failure will remain very high &3

v. 1.1, 24/Mar/2000 , (slide 1 - 33). Copying permitted freely © L.Hatton, 2000- &«




Bibliography

Bach, R. (1997) “Test automation snake oil”, 14th annual conference on Testing Computer
Software, Washington, USA

Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold.

Brettschneider, (1989) “Is your software ready for release ?”, IEEE Software, July, p. 100-108
Fagan, M.E. (1976) “Design and code inspections to reduce errors in program development”, IBM
Systems Journal, 15(3), p. 182-211.

Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman and Hall.

Genuchten, M. v. (1991). Towards a Software Factory. Eindhoven.

Gilb, T. & Graham D. (1993) Software Inspection, Addison-Wesley

Grady, R. B. and D. L. Caswell (1987). Software Metrics: Establishing a Company-Wide Program.
Englewood Cliffs, N.J., Prentice-Hall.

Graham, D. (1995) “A software inspection (failure) story”, EuroStar’95, London, November
Hatton, L. et. al. (1988). “SKS: an exercise in large-scale Fortran portability”, Software Practice
and Experience.

Hatton, L. (1995) “Safer C: Developing for High-Integrity and Safety-Critical Systems. McGraw-
Hill, ISBN 0-07-707640-0.

Hatton, L. (1997) Re-examining the fault density - component size connection, IEEE Software,
March-April 1997.

Hatton, L. (1997) The T experiments: errors in scientific software, IEEE Computational Science &
Engineering, vol 4, 2

Hatton, L. (1998) Does OO sync with the way we think ?, IEEE Software, May/June 1997

Hatton, L. (2000) “Software failure: avoiding the avoidable and living with the rest”, Addison-
Wesley, to appear in 2000. _
Humphreys, W. (1995) “A discipline of software engineering”, Addison-Wesley, ISBN 0-201- {ff
54610-8

v. 1.1, 24/Mar/2000 , (slide 1 - 34). Copying permitted freely © L.Hatton, 2000-




Bibliography

IEC 61508 (1991). Software for computers in the application of industrial safety-related systems.
International Electrotechnical Commission: Drafts only - cannot yet be referenced.

Kahan, W., Darcy, J.D.(1998) “How Java’s Floating-Point Hurts Everyone Everywhere”, ACM
1998 workshop on Java, Stanford California

Knight, J. C., A. G. Cass, et al. (1994). Testing a safety-critical application. International
Symposium on Software Testing and Analysis (ISSTA'94), Seattle, ACM.

Kolawa, A. (1999) “Mutation Testing: a new approach to automatic error detection”, StarEast ‘99,
Orlando, May 1999

Liedtke, C, and Ebert, H. (1995), “On the benefits of reinforcing code inspection activities”,
EuroStar’95, London

Leveson, N. (1995). “Safeware: System Safety and Computers.” Addison-Wesley, ISBN 0-201-
11972-2.

Littlewood, B. and L. Strigini (1992). “Validation of Ultra-High Dependability for Software-based
Systems.” Comm ACM to be published:

McCabe, T. A. (1976). “A complexity measure.” IEEE Trans Soft. Eng. SE-2(4): 308-320.

Mills, H.D. (1972) “On the statistical validation of computer programs”, IBM Federal Systems
Division. Gaithersburg, MD, Red. 72-6015, 1972

Myers, G. J. (1979). The Art of Software Testing. New York, John Wiley & Sons.

Nejmeh, B. A. (1988). “NPATH: A measure of execution path complexity and its applications.”
Comm ACM 31(2): 188-200.

Parnas, D. L., J. v. Schouwen, et al. (1990). “Evaluation of Safety-Critical Software.” Comm ACM

33(6): 636-648. {*F
v. 1.1, 24/Mar/2000 , (slide 1 - 35). Copying permitted freely © L.Hatton, 2000- .




Bibliography

» Pfleeger, S and Hatton L. (1997) “How well do Formal Methods work ?”, IEEE Computer, lan
1997.

» Pfleeger, S. (1998) “Measurement and testing: doing more with less”, ICTCS’98, Washington.

* Porter, AA., Siy, H.P., Toman, C.A., Votta, L.G. (1997) “An experiment to assess the cost-
benefits of code inspections in large scale software development”, IEEE Transactions, 23(6), p.
329-345

* Roper, M. (1999) “Problems, Pitfalls and Prospects for OO Code Review”, EuroStar’ 99,
Barcelona, November

* Veevers, A. and A. C. Marshall (1994). “A relationship between software coverage metrics and
reliability.” Software Testing, Verification and Reliability 4(1): 3-8.

* Vinter, O. and Poulsen, P-M (1996) “Improving the software process and test efficiency”, ESSI
Project 10438, http://www.esi.es/ESSI/Reports/All/10438

* Warnier, J. D. (1974). Precis de logique informatique: les procedures de traitement et leurs
donnees. H.E. Stenfert Kroesse.

 Woodward, M. R., D. Hedley, et al. (1980). “Experience with path analysis and testing of
programs.” IEEE Transactions 6(3): 278-286.

|

v. 1.1, 24/Mar/2000 , (slide 1 - 36). Copying permitted freely © L.Hatton, 2000- ﬁ




	Title Slide
	Overview
	Trends
	Rapidly growing software deployment
	Use in critical areas
	Use of floating point arithmetic
	The use of C as a standard language
	Recognition of the need for subsetting
	High cost of failure
	High cost of failure
	Overview
	Some example C standards
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA - a high-quality C standard
	MISRA acceptance
	MISRA tool support
	NUREG CR-6463
	Useful links
	Overview
	Possible future directions
	Higher level design systems
	Use of Java
	Use of C++
	Measurement feedback on object-orientation
	Measurement feedback on object-orientation
	Measurement feedback on object-orientation
	Use of C99
	Which direction ?
	Conclusions
	Bibliography
	Bibliography
	Bibliography

