"To what extent can we rely on the results of scientific computations ?"

ACAT '07, Amsterdam, The Netherlands

Les Hatton

Professor of Forensic Software Engineering Kingston University, UK L.Hatton@kingston.ac.uk, lesh@leshatton.org

Version 1.1: 20/Apr/2007

We are doing pretty well with hardware ...

1984

Mine 8-)

Its big brother :-(

2005

Build your own .. http://www.leshatton.org/lxf37_pc.html

Old and new

1984

• Cray X MP, 0.5 sec.

2005

 Hand-built 200 quid PC with bits from a computer fair, 0.044 sec.

If you have a Fortran compiler, feel free to download the benchmark from:-

http://www.leshatton.org/FB_885.html

So how are we doing with software ...

In at the deep end ... 1974

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla p + \nu\nabla^2 \vec{u}$$

UK Meteorological Office standard 10-level numerical weather prediction model. This term was dropped every other time step due to a software defect.

Reinstating it led to almost no difference in a 72 hour forecast !

Overview

Sources of error in numerical modelling
The unpleasant nature of software defect
What can we do about it ?

Sources of error in numerical modelling

- Precision problems
- Algorithmic problems
- Data problems
- Software problems

Scientists are used to dealing with the first three but not the last ...

Overview

Sources of error in numerical modelling *The unpleasant nature of software defect*What can we do about it ?

The unpleasant nature of software defect ...

- Its inevitable failure is a natural property of an engineering system
- Its unquantifiable so its easy to get misleading results without realising
- Defects can take a very long time to appear for the first time
- All numerical results derived using software are contaminated at some level.

Its inevitable - "Zero defect"

- Some comments on the chimera of zero defect
 - The chance of achieving it is vanishingly small
 - If you ever succeed you won't know it
 - If you ever succeed you won't be able to prove it
 - If you ever succeed you won't be able to repeat it

So how many defects do we have ?

- If you count all faults that failed and you have < 1 per 1000 executable lines of code (KXLOC) in the entire life-cycle of the system you are doing almost as well as anybody ever has.
- By this measure, the best ever is around 0.1, (NASA Shuttle software and the Linux kernel)
- Typical reasonable systems lie in the range 2-10 per KXLOC.

So how much code do we have ?

The amount of software in consumer electronic products is currently doubling about every 18 months.

- Line-scan TVs have ~500,000 lines of C.
- There are around 1-3 million lines of C in a car.
- The F/A-22 (Raptor) fighter has around 2 million lines of code.
- The Airbus A340 and Boeing 777 have 3-4 million lines of code, (more later...).
- A reasonably small scientific computation might have 100,000 lines of code.

Not a good decade: The USS Yorktown in "Please wait ..." mode

Not a good decade: An Airbus having a bad day

A Tarom airlines Airbus which performed an uncontrolled dive, climb, roll and spin near Orly in 1995 due to 'a fault in the automatic pilot'. The plane landed safely, a tribute to the pilots' skill.

Not a good decade: Ariane 5: What goes up ...

Smoke from the explosion June 4,1996 (AP Photo)

Whoops ...

More avionics ...

 28/Jul/2003. "As recently as February, test pilots of the new F/A-22 (Raptor) fighter were spending an average of 14 minutes per flight rebooting critical systems. This is now down to only 36 seconds per flight.

Washington Post.

Safety is not the same as Reliability

• Thomas the friendly torpedo ...

Whoops ...

Cars ...:

• 14/Apr/2004. Ford is recalling 363,440 of its 2001-2003 Ford Escape vehicles due to software problems in powertrain causing engine stalling.

Detroit News

- 17/Mar/04. 2003 US vehicle recalls hit 19.5 million in spite of 'engineering never being better'. Experts cite problem-prone computers as significant factor.
- 09/Mar/04, Toyota faces US safety investigation and potential recall of 1 million of its best-selling Camry and Lexus ES300 sedans because of reports of unexpected acceleration causing 30 crashes.

Detroit Free Press v. 1.1, 20/Apr/2007, (slide 1 - 20).

OS Reliability

24.5 million XP crashes per day

http://www.pcmag.com/article2/0,414 9,1210067,00.asp

5% of Windows Computers crash more than twice a day

http://www.nytimes.com/2003/07/25/t echnology/25SOFT.html

Its unquantifiable ...

10/April/2006: Malaysian man gets \$218 trillion phone bill. (Associated Press).

• Telekom Malaysia gave 10 days to pay. They later decided it was "a little excessive".

What is excessive and how would we know?

Subtle errors, (the T2 experiment, 1990-1994)

Lets ask a simple question:-

"If different sets of programmers program the same algorithms in the same programming language and feed them the same data with the same disposable parameters ...

How well do the results agree ?"

As a counterpoint, lets imagine that people drill \$30 million oil wells on the results :-)

How seismic data are acquired

Boats like these acquire between 1 and 5 Mb per second for several weeks.

A typical survey might contain 5 Terabytes.

Algorithms used

- As well as some bespoke algorithms, the following are used regularly ...
 - Multi-dimensional Fourier Transforms
 - Multi-dimensions Wiener filtering
 - Inversion of very large sparse matrices
 - Inversion of scalar wave equation
 - Various kinds of statistical correlation algorithms
 - ... lots more

At the time of this experiment, the principle language used was Fortran.

Similarity v. coordinate: No feedback

Defect example 1: feedback detail

Similarity v. coordinate: Feedback to company 8

Defect example 2: feedback detail

v. 1.1, 20/Apr/2007, (slide 1 - 30).

Similarity v. coordinate: Feedback to company 3

v. 1.1, 20/Apr/2007, (slide 1 - 31).

The end product: 9 subtly different views of the geology

v. 1.1, 20/Apr/2007, (slide 1 - 32).

T2 Results

- The accompanying slides illustrate:
 - Only 1-2 significant figures agreement after processing.
 - Disagreement is non-random and alternate views seem equally plausible
 - Feedback of anomalies along with other evidence confirms source of disagreement as software failure.

A summary of 10 years of failure experiments

Seismic processing software environment	Number of significant figures agreement
32 bit floating point arithmetic.	6
Same software on different platforms, same data.	4
Same software on same platform, 5-1 lossy compression.	3-4
Same software subjected to continual 'enhancement'	1-2
T2: different software, same specs, same data, same language, same parameters.	1

Portability degradation

Compression degradation

Maintenance degradation

Diversity degradation

Defects can take a very long time to appear for the first time, (Adams 1984)

All numerical results derived from software are contaminated ...

Define ...

- Static code fault: property of computer program likely to fail under some circumstances
- Dynamic failure: any difference between the actual and expected behaviour at run-time
- If we can find a statistically significant connection between these, we could predict the likelihood of the presence of failure from the source code alone

All numerical results derived from software are contaminated ...

- Find a suitable static code measure which is highly correlated to failures in known cases
- Use this to predict likely presence of failure in unknown cases from the code only.

Do statically detectable faults fail ?

The selected fault type is the occurrence rate of mistakes with the programming language.

The faults are highly correlated with dynamic failures

Data derived from CAA CDIS

Fault frequencies in C applications

Survey: 1993-1998

Fault frequencies in C applications - revisited

Note:

- Software fails frequently. When it does it is sometimes impossible to fix
- Software failure is highly unpredictable
- It doesn't really matter which programming language you use
- Software development is immature and little progress has been made in reliability in the last 25-30 years
- Many software failures can take an astonishingly long time to appear for the first time
- New bespoke projects have a very low success rate
- We have no technology to guarantee the absence of defect
- The cost of failure is limited only by the imagination
- We have an educational problem not a technology problem.

Overview

Sources of error in numerical modelling
The unpleasant nature of software defect
What can we do about it ?

What can we do about it ?

Do not use other people's code

- Use every opportunity for independent verification
- Try different languages and compilers

The role of open source

 Open source appears to get incrementally more reliable amongst other things.

What can we do about it ?

The computable paper (Claerbout and collaborators)

- Any scientific paper involving computation should publish:-
 - The science for peer review
 - The code for peer review
 - The environment in sufficient detail for repeatability
- There is an example at:
 - http://www.leshatton.org/NS_03.html

Other information

For more information and downloadable papers see:-

http://www.leshatton.org/